Optimal Milking
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 19456   Accepted: 6947
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

思路:
直接想到了Floyd和二分,可是就做不下去了,因为不知道怎么把二分的值,应用到图里面。没想到我竟然如此地菜呀。
这题要用到网络流。
先跑一个Floyd,求出各点的最短路。然后,二分答案,假如现在的二分值为mid,那么我们建立一个新图,图的边有以下部分(原图的标号是1->k+c):
1.原图(Floyd之后)距离小于mid,并且,起点是奶牛,终点是收奶机的边,每条边权值为1。
2.源点,也是就0号点,到每个奶牛的边,权值为1
3.每个收奶机,到汇点,也就是c+k+1点的边,每条边的权值为m
其中,源点与汇点都不是原图中存在的点。
然后,求最大流,判断最大流是否小于奶牛数。
代码:
#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
int n,k,c,m;
bool vis[300];
int num[300];
bool outflag;
struct node
{
int v;
int ser;
};
int mp[300][300];
const int inf = 99999999;
int mmp[300][300];
void init()
{
scanf("%d%d%d",&k,&c,&m);
n=k+c;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&mp[i][j]);
if(i!=j&&mp[i][j]==0){mp[i][j]=inf;}
}
}
} int floyd()
{
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mp[i][j]>mp[i][k]+mp[k][j]){
mp[i][j]=mp[i][k]+mp[k][j];
}
}
}
}
} void build(int maxn)
{
memset(mmp,0,sizeof(mmp));
for(int i=k+1;i<=n;i++){
mmp[0][i]=1;
}
for(int i=1;i<=k;i++){
mmp[i][n+1]=m;
}
for(int i=k+1;i<=n;i++){
for(int j=1;j<=k;j++){
if(mp[i][j]<=maxn){
mmp[i][j]=1;
}
}
}
} bool bfs(int s,int t)
{
queue<node>q;
memset(vis,0,sizeof(vis));
q.push(node{s,1});
node cur;vis[s]=true;
while(!q.empty()){
cur=q.front();q.pop();
num[cur.v]=cur.ser;
vis[cur.v]=true;
for(int i=0;i<=n+1;i++){
if(mmp[cur.v][i]>0&&!vis[i]){
q.push(node{i,cur.ser+1});
}
}
}
if(num[t]){return true;}
else return false;
} int dfs(int s,int t,int f)
{
if(s==t){return f;}
vis[s]=true;
int d;
for(int i=0;i<=n+1;i++){
if(!vis[i]&&mmp[s][i]>0&&num[s]==num[i]-1){
d=dfs(i,t,min(f,mmp[s][i]));
mmp[s][i]-=d;
mmp[i][s]+=d;
if(d!=0){return d;}
}
}
return 0;
} int dinic()
{
memset(num,0,sizeof(num));
int ans=0;
while(bfs(0,n+1)){
int d;
memset(vis,0,sizeof(vis));
while(d=dfs(0,n+1,inf)){
ans+=d;
memset(vis,0,sizeof(vis));
}
memset(num,0,sizeof(num));
} return ans;
} int solve()
{
int l=0,r=inf,mid;
while(r>=l){
mid=(r+l)>>1;
if(mid==2){outflag=1;}
build(mid); if(dinic()>=c){
r=mid-1;
}
else{
l=mid+1;
}
}
return l;
} int main()
{
init();
floyd();
printf("%d\n",solve());
}

  

 

POJ 2112 Optimal Milking (Dinic + Floyd + 二分)的更多相关文章

  1. POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)

    题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远   输入数据: 第一行三个数 K, C, M  接下来是   ...

  2. POJ 2112 Optimal Milking【网络流+二分+最短路】

    求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...

  3. POJ 2112 Optimal Milking 最短路 二分构图 网络流

    题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...

  4. POJ 2112 Optimal Milking(最大流+二分)

    题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...

  5. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  6. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  7. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  8. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  9. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

随机推荐

  1. delphi中 dataset容易出错的地方

    最近写delphi项目,用到的数据集中的dataset,一直修改exception啊,写下过程. 在对数据集进行任何操作之前,首先要打开数据集.要打开数据集,可以把Active属性设为True,例如: ...

  2. Java使用RabbitMQ之整合Spring(消费者)

    依赖包: <!--RabbitMQ集成spring--> <!-- https://mvnrepository.com/artifact/org.springframework.am ...

  3. layui弹窗 之 iframe关闭

    1)关闭特定iframe //当在iframe页面关闭自身时,在iframe页执行以下js脚本 var index = parent.layer.getFrameIndex(window.name); ...

  4. 2.23日刷数论题后总结(题目整理自SCUT

    第一道:Rightmost digit 求N^N次最后一个数字 快速幂mod10咯 代码如下: #include <cstdio> #define ll long long using n ...

  5. codeforces104A

    Blackjack CodeForces - 104A Tensor特别喜欢玩扑克,还总是爱发明一些关于扑克牌的游戏,有天他突然脑洞大开想到了这样的一个游戏: 现在有一副52张的扑克牌(没有大小王), ...

  6. JAVA-Web 百度编辑器,修改默认大小

    百度UEditor富文本编辑器-设置默认字体.字号.行间距及添加字体种类 如果这个还不能改变大小了,找一下在文件夹UEditor--css--中default.css文件,搜索出红色部分: grid_ ...

  7. poj-1273(最大流)

    题解:纯板子题... EK算法 #include<iostream> #include<algorithm> #include<cstring> #include& ...

  8. 学习Linux系统的态度及技巧

    Linux作为一种简单快捷的操作系统,现在被广泛的应用.也适合越来越多的计算机爱好者学习和使用.但是对于Linux很多人可能认为很难,觉得它很神秘,从而对其避而远之,但事实真的是这样么?linux真的 ...

  9. 安装使用nginx

    nginx的优势 是c语言开发的一个web框架 官方声称支持10W+的并发 天下武功 唯快不破 tengine+ uwsgi(多进程) + django 你公司的技术栈是什么样? centos7 + ...

  10. Python Argparse模块

    argparse模块 在Python中,argparse模块是标准库中用来解析命令行参数的模块,用来替代已经过时的optparse模块.argparse模块能够根据程序中的定义从sys.argv中解析 ...