NTT学习笔记
和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可.
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int MAXN = 3 * 1e6 + 10, P = 998244353, G = 3;
LL a[MAXN], b[MAXN];
int N, M, limit = 1, L, r[MAXN], Gi;
inline LL fastpow(LL a, LL k) {
LL base = 1;
while(k) {
if(k & 1) base = (base * a ) % P;
a = (a * a) % P;
k >>= 1;
}
return base % P;
}
inline void NTT(LL *A, int type) {
for (int i = 0; i < limit; i++) {
if(i < r[i]) swap(A[i], A[r[i]]);
}
for (int mid = 1; mid < limit; mid <<= 1) {
LL Wn = fastpow (type == 1 ? G : Gi , (P - 1) / (mid << 1));
for(int j = 0; j < limit; j += (mid << 1)) {
LL w = 1;
for (int k = 0; k < mid; k++, w = (w * Wn) % P) {
int x = A[j + k], y = (w * A[j + k + mid]) % P;
A[j + k] = (x + y) % P;
A[j + k + mid] = (x - y + P) % P;
}
}
}
}
int main () {
Gi = fastpow (G, P - 2);
cin >> N >> M;
for (int i = 0; i <= N; i++) {cin >> a[i]; a[i] = (a[i] + P) % P;}
for (int i = 0; i <= M; i++) {cin >> b[i]; b[i] = (b[i] + P) % P;}
while (limit <= N + M) limit <<= 1, L++;
for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT (a, 1); NTT (b, 1);
for (int i = 0; i < limit; i++) a[i] = (a[i] * b[i]) % P;
NTT (a, -1);
LL inv = fastpow (limit, P - 2);
for (int i = 0; i <= N + M; i++) {
printf ("%d ", (a[i] * inv) % P);
}
return 0;
}
NTT学习笔记的更多相关文章
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- FFT、NTT学习笔记
参考资料 picks miskcoo menci 胡小兔 unname 自为风月马前卒 上面是FFT的,学完了就来看NTT吧 原根 例题:luogu3803 fft优化后模板 #include < ...
- FFT&NTT学习笔记
具体原理就不讲了qwq,毕竟证明我也不太懂 FFT(快速傅立叶变换)&NTT(快速数论变换) FFT //求多项式乘积 //要求多项式A和多项式B的积多项式C //具体操作就是 //DFT(A ...
- NTT 学习笔记
引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...
- FFT/NTT 学习笔记
0. 前置芝士 基础群论 复数 \(\mathbb C = \mathbb R[x^2+1]\) 则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb ...
- 任意模数NTT学习笔记
这两天有点颓,所以东西学的也很慢...这个一眼就能推出来的活生生卡了我两天.. 说几个细节: 柿子: \[f*g = (\frac{f}{M} +f\%m)*(\frac{g}{M} +g\%m) \ ...
- [学习笔记]NTT——快速数论变换
先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
随机推荐
- mvc 按钮权限控制
需要开发一个按钮权限的控制,思路:拦截所有按钮路径,和用户拥有的3级按钮权限对比, 所有验证都一个方法解决,只需要修改js后的参数,参数就是按钮对应的权限码 如果有什么问题请提醒,谢谢! xml: & ...
- 使用chcache 缓存
在项目里碰到了表单提交和ajax访问后台取到的request对象不是同一个对象,所以不能够资源共享,问了大神决定配置一个缓存来处理这个问题. 引用jar :ehcache-core-2.5.2.jar ...
- mysql group by 对多个字段进行分组
在平时的开发任务中我们经常会用到MYSQL的GROUP BY分组, 用来获取数据表中以分组字段为依据的统计数据.比如有一个学生选课表,表结构如下: Table: Subject_Selection S ...
- JS--dom对象:document object model文档对象模型
dom对象:document object model文档对象模型 文档:超文本标记文档 html xml 对象:提供了属性和方法 模型:使用属性和方法操作超文本标记性文档 可以使用js里面的DOM提 ...
- poj-1386(欧拉回路)
题意:给你n个单词,每个单词可以和另一个单词连接,前提是(这个单词的尾字母等下一个单词的首字母),问你有没有一种连法能够连接所有的单词: 解题思路:每个单词可以看成是首字母指向尾字母的一条边,那么就变 ...
- Mysql 查看连接数,状态 最大并发数(赞)
Mysql 查看连接数,状态 最大并发数(赞) -- show variables like '%max_connections%'; 查看最大连接数 set global max_connect ...
- BZOJ3876[Ahoi2014&Jsoi2014]支线剧情——有上下界的最小费用最大流
题目描述 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费 ...
- PHP错误代号列表
代号 代号 语法 参考 T_ABSTRACT abstract 抽象类(自 PHP 5.0.0 起可用) T_AND_EQUAL &= 赋值运算符 T_ARRAY array() array( ...
- php+redis配置
系统环境: win10+phpstudy+lamp 安装扩展 php5.6.4 =>下载地址:http://windows.php.net/downloads/pecl/releases/red ...
- 【NOIP2018 Day1】题解
T3 rp++; 今天题比较简单 而且考了很多嫌疑原题? 大家基本250+ 本蒟蒻...T3十分看脸 再次祝rp++; T1 积木大赛本赛嘛 如果d[i] < d[i - 1] ans += d ...