和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可.

#include <bits/stdc++.h>
using namespace std; #define LL long long const int MAXN = 3 * 1e6 + 10, P = 998244353, G = 3; LL a[MAXN], b[MAXN];
int N, M, limit = 1, L, r[MAXN], Gi; inline LL fastpow(LL a, LL k) {
LL base = 1;
while(k) {
if(k & 1) base = (base * a ) % P;
a = (a * a) % P;
k >>= 1;
}
return base % P;
}
inline void NTT(LL *A, int type) {
for (int i = 0; i < limit; i++) {
if(i < r[i]) swap(A[i], A[r[i]]);
}
for (int mid = 1; mid < limit; mid <<= 1) {
LL Wn = fastpow (type == 1 ? G : Gi , (P - 1) / (mid << 1));
for(int j = 0; j < limit; j += (mid << 1)) {
LL w = 1;
for (int k = 0; k < mid; k++, w = (w * Wn) % P) {
int x = A[j + k], y = (w * A[j + k + mid]) % P;
A[j + k] = (x + y) % P;
A[j + k + mid] = (x - y + P) % P;
}
}
}
} int main () {
Gi = fastpow (G, P - 2);
cin >> N >> M;
for (int i = 0; i <= N; i++) {cin >> a[i]; a[i] = (a[i] + P) % P;}
for (int i = 0; i <= M; i++) {cin >> b[i]; b[i] = (b[i] + P) % P;}
while (limit <= N + M) limit <<= 1, L++;
for (int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT (a, 1); NTT (b, 1);
for (int i = 0; i < limit; i++) a[i] = (a[i] * b[i]) % P;
NTT (a, -1);
LL inv = fastpow (limit, P - 2);
for (int i = 0; i <= N + M; i++) {
printf ("%d ", (a[i] * inv) % P);
}
return 0;
}

NTT学习笔记的更多相关文章

  1. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  2. FFT、NTT学习笔记

    参考资料 picks miskcoo menci 胡小兔 unname 自为风月马前卒 上面是FFT的,学完了就来看NTT吧 原根 例题:luogu3803 fft优化后模板 #include < ...

  3. FFT&NTT学习笔记

    具体原理就不讲了qwq,毕竟证明我也不太懂 FFT(快速傅立叶变换)&NTT(快速数论变换) FFT //求多项式乘积 //要求多项式A和多项式B的积多项式C //具体操作就是 //DFT(A ...

  4. NTT 学习笔记

    引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...

  5. FFT/NTT 学习笔记

    0. 前置芝士 基础群论 复数 \(\mathbb C = \mathbb R[x^2+1]\) 则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb ...

  6. 任意模数NTT学习笔记

    这两天有点颓,所以东西学的也很慢...这个一眼就能推出来的活生生卡了我两天.. 说几个细节: 柿子: \[f*g = (\frac{f}{M} +f\%m)*(\frac{g}{M} +g\%m) \ ...

  7. [学习笔记]NTT——快速数论变换

    先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...

  8. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  9. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

随机推荐

  1. Python——Django-应用的models.py内容

    一.数据的相关配置 #数据库的相关配置 DATABASE = { 'default':{ #连接的数据库类型 'ENGINE':'django.db.backends.sqlite3', #连接数据库 ...

  2. LODOP直接用base64码输出图片

    Lodop中的ADD_PRINT_IMAGE,也可以直接输出base64码图片,不用加img标签,如果加了img标签,会被当做超文本对待,受浏览器引擎解析的影响. 什么时候使用base64码直接输出比 ...

  3. 【python练习题】程序4

    # 题目:输入某年某月某日,判断这一天是这一年的第几天? import time year = input('输入年份: \n') month = input('输入月份: \n') day = in ...

  4. Xamarin 简化的Android密钥库签名

    安装 开始使用这个新工具不容易.在Visual Studio 2017(即将推出VS 2015),只需转到工具 - >扩展和更新,并搜索“密钥库”来查找扩展名. 下载后,只需重新启动Visual ...

  5. 了解AutoCAD对象层次结构 —— 2 ——文档

    再次想象另外一个场景:启动AutoCAD程序后,您新建了两个.dwg文件,也就是说创建了两个文档(Document)对象.将窗口进行层叠,您看到的窗口应该与下图类似: 图 4‑3 如何访问这些文档呢? ...

  6. Codeforces Round #530 (Div. 2) F (树形dp+线段树)

    F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...

  7. ecplise An incompatible version [1.2.14] of the APR based Apache Tomcat Native library is installed, while T

    原文:https://www.cnblogs.com/levy-home/p/5676322.html 到http://archive.apache.org/dist/tomcat/tomcat-co ...

  8. 用keras实现基本的文本分类任务

    数据集介绍 包含来自互联网电影数据库的50000条影评文本,对半拆分为训练集和测试集.训练集和测试集之间达成了平衡,意味着它们包含相同数量的正面和负面影评,每个样本都是一个整数数组,表示影评中的字词. ...

  9. 【map】p1184 高手之在一起

    题目背景 高手是可以复活的,这点我们大家都知道. 题目描述 高手列出了一个详尽的日程表,这次他要追求的则是一个心灵纯洁的小萝莉.他和她都是要上课的,但是也会有时间空闲,于是高手决定无时无刻都要跟着她. ...

  10. [WC2014]紫荆花之恋(动态点分治+替罪羊思想)

    题目描述 强强和萌萌是一对好朋友.有一天他们在外面闲逛,突然看到前方有一棵紫荆树.这已经是紫荆花飞舞的季节了,无数的花瓣以肉眼可见的速度从紫荆树上长了出来.仔细看看的话,这个大树实际上是一个带权树.每 ...