TensorFlow tensor张量拼接concat - split & stack - unstack
TensorFlow提供两种类型的拼接:
tf.concat(values, axis, name='concat'):按照指定的已经存在的轴进行拼接
tf.stack(values, axis=0, name='stack'):按照指定的新建的轴进行拼接
concat
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
== t1.expand(t2)
tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
stack
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.stack([t1, t2], 0) ==> [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
x = []; x.append(t1); x.append(t2) tf.stack([t1, t2], 1) ==> [[[1, 2, 3], [7, 8, 9]], [[4, 5, 6], [10, 11, 12]]]
tf.stack([t1, t2], 2) ==> [[[1, 7], [2, 8], [3, 9]], [[4, 10], [5, 11], [6, 12]]]
x = tf.constant([1, 4])
y = tf.constant([2, 5])
z = tf.constant([3, 6])
tf.stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]] (Pack along first dim.)
tf.stack([x, y, z], axis=1) # [[1, 2, 3], [4, 5, 6]]
UnStack
TensorFlow tensor张量拼接concat - split & stack - unstack的更多相关文章
- 『TensorFlow』张量拼接_调整维度_切片
1.tf.concat tf.concat的作用主要是将向量按指定维连起来,其余维度不变:而1.0版本以后,函数的用法变成: t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, ...
- 深度学习框架Tensor张量的操作使用
- 重点掌握基本张量使用及与numpy的区别 - 掌握张量维度操作(拼接.维度扩展.压缩.转置.重复……) numpy基本操作: numpy学习4:NumPy基本操作 NumPy 教程 1. Tens ...
- tf.concat, tf.stack和tf.unstack的用法
tf.concat, tf.stack和tf.unstack的用法 tf.concat相当于numpy中的np.concatenate函数,用于将两个张量在某一个维度(axis)合并起来,例如: a ...
- tensorflow中张量(tensor)的属性——维数(阶)、形状和数据类型
tensorflow的命名来源于本身的运行原理,tensor(张量)意味着N维数组,flow(流)意味着基于数据流图的计算,所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程. ...
- 使用TensorFlow v2张量的一个简单的“hello world”示例
使用TensorFlow v2张量的一个简单的"hello world"示例 import tensorflow as tf # 创建一个张量 hello = tf.constan ...
- TensorFlow之张量
张量的概念 TensorFlow中的Tensor就是张量,张量是数学对象,是对标量.向量.矩阵的泛化.我们可以直接理解成张量就是列表,就是多维数组. 张量的维数用阶来表示: 0阶张量 标量 单个值 例 ...
- Tensorflow描述张量的维度:阶,形状以及维数
张量 TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通. 阶 在TensorFl ...
- tensorflow中张量的理解
自己通过网上查询的有关张量的解释,稍作整理. TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中 ...
- pytorch中tensor张量数据基础入门
pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot ...
随机推荐
- Python测试Post请求
原有: #coding:utf-8 import requests def request(title, content): datas = {"title":title,&quo ...
- fastjson 操作
1.String 转 bean String addition = ...; CoffeeFormula formula = JSON.parseObject(addition, new TypeRe ...
- PHP——base64的图片的另类上传方法
前言 这只是个暂行的办法,回头研究好七牛云的base64上传或者vue的文件上传后还是要进行更改的 想法是这样的,既然前端只能穿base64的那就传base64的然后转为文件上传到七牛云后再删除 本地 ...
- MySql 主从同步 (库名不同)
主库:192.168.1.250 从库:192.168.1.199 主库 my.ini # For advice on how to change settings please see # htt ...
- appium 原理解析(转载雷子老师博客)
appium 原理解析 原博客地址:https://www.cnblogs.com/leiziv5/p/6427609.html Appium是 c/s模式的appium是基于 webdriver 协 ...
- Machine Schedule POJ - 1325(水归类建边)
Machine Schedule Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17457 Accepted: 7328 ...
- pytorch kaggle 泰坦尼克生存预测
也不知道对不对,就凭着自己的思路写了一个 数据集:https://www.kaggle.com/c/titanic/data import torch import torch.nn as nn im ...
- STL之set和map
by attack666 set与map map 内部实现是一棵红黑树 定义 key和value分别对应着两种类型 map<key, value> mp; 内部函数 直观的理 ...
- luogu5019 [NOIp2018]铺设道路 (贪心)
和NOIp2013 积木大赛一模一样 我在堆一格的时候,我把它尽量地往右去延伸 于是如果对于一个i,a[i-1]<a[i],那i在之前一定只堆过a[i-1]那么多,所以要再堆a[i]-a[i-1 ...
- [HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...