Mysql:索引实战
MySQL主要提供2种方式的索引:B-Tree索引,Hash索引
B树索引具有范围查找和前缀查找的能力,对于有N节点的B树,检索一条记录的复杂度为O(LogN)。相当于二分查找。
哈希索引只能做等于查找,但是无论多大的Hash表,查找复杂度都是O(1)。
显然,如果值的差异性大,并且以等值查找(=、 <、>、in)为主,Hash索引是更高效的选择,它有O(1)的查找复杂度。
如果值的差异性相对较差,并且以范围查找(between and)为主,B树是更好的选择,它支持范围查找。
索引
无论是面试,还是实际工作中,对于一个Java程序员来说,数据库优化是避不开的一个技术点,关于数据库的优化,在性能达不到要求的情况下,我大致给出以下几个方向:
(1)优化表结构,对常用字段和非常用的字段分开存储
(2)优化SQL,合理使用索引
(3)做数据库读写分离,减少IO压力,由于数据库对记录做了持久化并存储在磁盘上,对磁盘的I/O又是非常消耗性能的操作,因此读、写都在一个库中会大大增加I/O的压力
(4)尝试使用缓存,不要让数据都走数据库
(5)对业务做垂直拆分
(6)对表做水平拆分,这一步比较麻烦,要注意主键生成规则以及请求路由规则
以上6个点是有优先级的,本文关注的是第二点的索引部分。正确合理地使用索引对于数据库性能提升是至关重要的,本文暂时不分析索引原理,只是从实战的角度,总结一下索引的使用技巧,理论结合实践,印象会更深一些。
当然,事前我已经建立了一张很简单的student表并向表中插入了10万条数据,SQL为:
DROP TABLE IF EXISTS `student`;
CREATE TABLE `student` (
`s_id` int(11) NOT NULL AUTO_INCREMENT,
`s_name` varchar(100) DEFAULT NULL,
`s_age` int(11) DEFAULT NULL,
`s_phone` varchar(30) DEFAULT NULL,
PRIMARY KEY (`s_id`),
KEY `s_name` (`s_name`)
) ENGINE=InnoDB, CHARSET=utf8;
使用普通索引与不使用普通索引的区别
先看一下不使用普通索引,进行查询,执行SQL语句:
select * from student where s_name = "99999ssss";
看一下查询时间:

花费了0.179秒,使用explain查看一下该条SQL语句的执行情况:

分析几个关键信息:
- select_type:SIMPLE,这个不是很关键,只是表示这是一次简单的查询,没有join,没有union,没有中间表
- type:ALL,表示该次SQL进行了全表查询
- key:MySQL使用的索引名,这里null表示此次SQL查询MySQL并没有使用索引
- rows:这个是最关键的,表示这次SQL查询了100665条记录
OK,接下来给s_name这一列加上普通索引:
alter table student add index s_name(s_name);
看一下运行结果:


看到在s_name上加上索引之后,查询速度马上快了3倍以上。
从分析结果上来看,由于此次SQL对列s_name使用了索引,因此rows只查了1条记录,大大提升了查询效率。
把索引建立在有大量重复数据的字段上
把索引建立在有大量重复数据的字段上,并不能有效地提升SQL效率,比如我的s_phone的取值为"00000000"~"99999999",此时对s_phone做查询,未加索引的时候:

看到这条select语句的查询时间是0.05秒,而给s_phone字段加了索引之后:

反而变为了0.064秒,并没有显著地提升查询效率,反而更加缓慢。通过explain语句,发现此次SQL通过索引查询了18000条rows,再去定位这18000多条数据,自然会慢一点。
这说明了,即使查询的时候用到了索引,也未必能提升查询的效率,索引建立在重复数据量很少的字段上效果才明显,但是这也将导致索引的增大,不过大多数时候这并不是太大的问题。
索引与like
不建议对索引列使用like语句,比如说执行以下两句SQL:
select * from student where s_name like "%99999ssss%";
select * from student where s_name like "%99999ssss";
看一下explain出来的结果,都是一样的:

发现没有用到索引,这是对索引列使用like的限制,要对索引列使用like,通配符只能在结尾,开头不可以有任何的通配符,比如:
select * from student where s_name like "99999ssss%";
此时再explain看一下:

看到这么实用like则使用到了索引,这不得不说是一个限制。
索引与函数
在索引列上使用MySQL函数也会导致索引失效,看一个例子:
select * from student where "99999ssss" = left(s_name, 9);
这条SQL语句非常好理解,查询s_name列中从左边开始截取9个字符后的字符串为"99999ssss"的记录,查看一下explain的结果:

结果很明显,没有用到索引,这表明对索引列使用函数将导致索引失效。
一个技巧是,依然使用=,但是索引列不使用函数而对常数项使用函数,这样索引就有效了,当然这条语句是无法这么优化的。
Mysql:索引实战的更多相关文章
- MySQL索引实战经验总结
MySQL索引对数据检索的性能至关重要,盲目的增加索引不仅不能带来性能的提升,反而会消耗更多的额外资源,本篇总结了一些MySQL索引实战经验. 索引是用于快速查找记录的一种数据结构.索引就像是数据库中 ...
- mysql颠覆实战笔记(二)-- 用户登录(一):唯一索引的妙用
版权声明:笔记整理者亡命小卒热爱自由,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...
- 知识点:Mysql 索引优化实战(3)
知识点:Mysql 索引原理完全手册(1) 知识点:Mysql 索引原理完全手册(2) 知识点:Mysql 索引优化实战(3) 知识点:Mysql 数据库索引优化实战(4) 索引原理知识回顾 索引的性 ...
- MySQL索引介绍和实战
索引是什么 MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构. 可以得到索引的本质:索引是数据结构,索引的目的是提高查询效率,可以类比英语新华字典,根据目录定位词 ...
- Mysql之B+树索引实战
索引代价 空间上的代价 一个索引都对应一棵B+树,树中每一个节点都是一个数据页,一个页默认会占用16KB的存储空间,所以一个索引也是会占用磁盘空间的. 时间上的代价 索引是对数据的排序,那么当对表中的 ...
- MySQL 索引原理概述及慢查询优化实战
MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会从职位 ...
- mysql实战优化之四:mysql索引优化
0. 使用SQL提示 用户可以使用use index.ignore index.force index等SQL提示来进行选择SQL的执行计划. 1.支持多种过滤条件 2.避免多个范围条件 应尽量避免在 ...
- 【真·干货】MySQL 索引及优化实战
热烈推荐:超多IT资源,尽在798资源网 声明:本文为转载文章,为防止丢失所以做此备份. 本文来自公众号:GitChat精品课 原文地址:https://mp.weixin.qq.com/s/6V7h ...
- MYSQL索引结构原理、性能分析与优化
[转]MYSQL索引结构原理.性能分析与优化 第一部分:基础知识 索引 官方介绍索引是帮助MySQL高效获取数据的数据结构.笔者理解索引相当于一本书的目录,通过目录就知道要的资料在哪里, 不用一页一页 ...
- mysql颠覆实战笔记(一)--设计一个项目需求,灌入一万数据先
版权声明:笔记整理者亡命小卒热爱自由,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...
随机推荐
- Elasticsearch 分片路由原理指定分片存储查询
Elasticsearch 项目中使用到Es的父子结构.在数据填充之后,查看每个节点的数据分布情况,发现有的节点数据多,有的节点少的情况,在未使用Es父级结构之前,每个节点的数据分布还算平均,如下图: ...
- Shell基础 - Bash基础功能
历史命令 history选项: -c 清空历史命令 -w 立即保存历史命令Linux 下输入过的历史命令,都会保存在根目录下的:~/root/.bash_history 文件中默认保存 1000 条, ...
- 自适应PC端网页制作使用REM
做一个PC端的网页,设计图是1920X1080的. 要在常见屏上显示正常(比例正确可) 1280X720 1366X768 1440X900 1920X1080 使用了几种办法 1.内容在一屏内显示的 ...
- [2017-7-27]Android Learning Day5
总结篇! 吭哧吭哧了三天,最近不断研究<第一行代码:第二版>170多页的那个新闻实践项目,虽然也没有用到数据库和一些Web爬虫的知识,新闻数据都是随机生成的字符串...... 但还是很开心 ...
- CF1142C U2(计算几何,凸包)
题目大意:平面上有 $n$ 个点,第 $i$ 个点是 $(x_i,y_i)$.问有多少条抛物线(二次项系数为 $1$),经过这些点中不同的两个点,并且内部(不含边界)没有任何这些点.重合的抛物线只算一 ...
- poj 2356 (抽屉原理)
题目链接:http://poj.org/problem?id=2356 题目大意:给你n个数,要你从n个数选出若干个数,要求这若干个数的和是n的倍数,输出选择数的个数,以及相应的数. 解题思路: 以下 ...
- 手把手教你用1行代码实现人脸识别 --Python Face_recognition
环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 ...
- 【洛谷P3901】数列找不同
题目大意:给定一个长度为 N 的序列,每个点被染了一个颜色.现有 M 个询问,每个询问查询区间 [l,r] 内的点是否颜色都是不同的. 题解:莫队裸题. 直接维护区间颜色数,用 cnt[] 记录下区间 ...
- Could not install the app on the device, read the error above for details. Make sure you have an Android emulator running or a device connected and have set up your Android development environment:
Administrator@DESKTOP-EHCTIOR MINGW64 /d/react-native-eyepetizer (master) $ react-native run-android ...
- 实现迁徙学习-《Tensorflow 实战Google深度学习框架》代码详解
为了实现迁徙学习,首先是数据集的下载 #利用curl下载数据集 curl -o flower_photos.tgz http://download.tensorflow.org/example_ima ...