bzoj 2427
非常好的一道题,可以说是树形dp的一道基础题
首先不难发现,:如果我们把有关系的两个点用有向边相连,那么就会形成一个接近树的结构。如果这是一棵完美的树,我们就可以直接在树上打背包了
但是这并不是一棵完美的树,甚至并不是一棵树,因为:
首先,由于题中有n个点,还有n条边,所以有很大的几率出现环!
而且,如果出现了环,那么很有可能整个图并不连通,这样一来根本无法跑dp
所以我们要采取一些策略:
首先,对于出现环的情况,根据题意,此时环中的所有点要么都选,要么都不选,所以我们可以进行tarjan缩点,然后在新图上进行dp
至于整个图不连通的情况,我们可以虚拟一个超级原点向所有入度为0的点连边,这样就可以形成一棵真正的树,这样跑树形dp就可以了。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
struct Edge
{
int next;
int to;
}edge[105],e[105];
int head[105];
int h[105];
int cot=1;
int cnt=1;
void init()
{
memset(head,-1,sizeof(head));
memset(h,-1,sizeof(h));
cnt=1;
cot=1;
}
void adde(int l,int r)
{
e[cot].next=h[l];
e[cot].to=r;
h[l]=cot++;
}
void add(int l,int r)
{
edge[cnt].next=head[l];
edge[cnt].to=r;
head[l]=cnt++;
}
int n,m;
int w[105];
int v[105];
int nv[105];
int nw[105];
int posi[105];
int src_cnt=0;
int src_num[105];
int my_stack[105];
int dfn[105];
int low[105];
int dp[105][505];
int tot=0;
int ttop=0;
bool used[105];
int s[105];
void tarjan(int rt)
{
my_stack[++ttop]=rt;
dfn[rt]=low[rt]=++tot;
for(int i=head[rt];i!=-1;i=edge[i].next)
{
int to=edge[i].to;
if(!dfn[to])
{
tarjan(to);
low[rt]=min(low[rt],low[to]);
}else if(!posi[to])
{
low[rt]=min(low[rt],dfn[to]);
}
}
if(dfn[rt]==low[rt])
{
int t=0;
src_cnt++;
while(t!=rt)
{
t=my_stack[ttop--];
posi[t]=src_cnt;
src_num[src_cnt]++;
nv[src_cnt]+=v[t];
nw[src_cnt]+=w[t];
}
}
}
void dfs(int x)
{
s[x]=nw[x];
dp[x][nw[x]]=nv[x];
for(int i=h[x];i!=-1;i=e[i].next)
{
int to=e[i].to;
dfs(to);
for(int j=s[x];j>=nw[x];j--)
{
for(int k=0;k<=s[to];k++)
{
if(j+k>m)
{
break;
}
dp[x][j+k]=max(dp[x][j+k],dp[x][j]+dp[to][k]);
}
}
s[x]+=s[to];
}
}
int main()
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=n;i++)
{
scanf("%d",&w[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
}
for(int i=1;i<=n;i++)
{
int f;
scanf("%d",&f);
if(f)
{
add(f,i);
}
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])
{
tarjan(i);
}
}
for(int i=1;i<=n;i++)
{
for(int j=head[i];j!=-1;j=edge[j].next)
{
int to=edge[j].to;
if(posi[to]!=posi[i])
{
adde(posi[i],posi[to]);
used[posi[to]]=1;
}
}
}
for(int i=1;i<=src_cnt;i++)
{
if(!used[i])
{
adde(0,i);
}
}
dfs(0);
int ans=0;
for(int i=0;i<=m;i++)
{
ans=max(ans,dp[0][i]);
}
printf("%d\n",ans);
return 0;
}
bzoj 2427的更多相关文章
- BZOJ 2427 [HAOI2010]软件安装 | 这道树形背包裸题严谨地证明了我的菜
传送门 BZOJ 2427 题解 Tarjan把环缩成点,然后跑树形背包即可. 我用的树形背包是DFS序上搞的那种. 要注意dp数组初始化成-INF! 要注意dp顺推的时候也不要忘记看数组是否越界! ...
- [BZOJ 2427] 软件安装
Link: BZOJ 2427 传送门 Solution: 只看样例的话会以为是裸的树形$dp$…… 但实际上题目并没有说明恰好仅有一个物品没有依赖项 因此原图可能由是由多棵树与多个图组成的 先跑一遍 ...
- bzoj 2427 软件安装 - Tarjan - 树形动态规划
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- BZOJ 2427 & 分块裸题
题意: 求区间内的众数,强制在线. SOL: 推荐一个大神犇的blog,讲的还是很好的(主要我喜欢他的代码风格(逃:http://www.cnblogs.com/JoeFan/p/4248767.ht ...
- BZOJ 2427: [HAOI2010]软件安装( dp )
软件构成了一些树和一些环, 对于环我们要不不选, 要么选整个环. 跑tarjan缩点后, 新建个root, 往每个入度为0的点(强连通分量) 连边, 然后跑树dp( 01背包 ) ---------- ...
- bzoj 2427: [HAOI2010]软件安装
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- BZOJ 2427 软件安装(强连通分量+树形背包)
题意:现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现在有 ...
- bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp
[HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2029 Solved: 811[Submit][Status][Dis ...
- bzoj 2427: [HAOI2010]软件安装【tarjan+树形dp】
一眼最大权闭合子图,然后开始构图,画了画之后发现我其实是个智障网络流满足不了m,于是发现正确的打开方式应该是一眼树上dp 然后仔细看了看性质,发现把依赖关系建成图之后是个奇环森林,这个显然不能直接dp ...
随机推荐
- Tip:什么是JavaBean
可视化JavaBean 非可视化JavaBean(分:值JavaBean和工具JavaBean) JavaBean是一个遵循特定写法的Java类,它通常具有如下特点: 这个Java类必须具有一个无参 ...
- C语言中用于计算数组长度的函数 “strlen() ”。
de>#include<stdio.h>#include<stdlib.h>#define MAX_LEN 255int my_strlen1(const char* s ...
- yum upgrade和yum update的区别
Linux升级命令有两个分别是yum upgrade和yum update, 这个两个命令是有区别的: yum -y update 升级所有包同时也升级软件.系统版本和系统内核 yum -y upgr ...
- ajax跨域请求のJSONP
简单说了一下,JSON是一种基于文本的数据交换方式,或者叫做数据描述格式. JSON的优点: 1.基于纯文本,跨平台传递极其简单: 2.Javascript原生支持,后台语言几乎全部支持: 3.轻量级 ...
- oracle查询语句 select a||','||b||','||c from table where a in('m','n')
查询table表中 字段a = m 或 n 时,a列,b列,c列的值,并且这三列之间用 ","(逗号)分割. 追问:连接符的作用呢?就是显示的时候链接abc和中间的逗号么?追答:| ...
- 异常:已引发: "设置 connectionId 时引发了异常。" (System.Xaml.XamlObjectWriterException) 引发了一个 System.Xaml.XamlObjectWriterException: "
项目中,引用一个富文本编辑器,SmithHtmlEditor,进入页面的时候异常. 在View和ViewModel所在的类库引用. 还需要在Main中引用.
- 2018 codejam kickstart H轮
被第一题傻逼题卡了很久……好的我也是个傻逼 倒在了最后一题 本来以为小数据过了就能过大数据 结果下载了大数据 发现怎么输出了好多个零 调代码过程中超时了 结束后重新提交了一下 果然是不通过的 A 题目 ...
- Tomcat 部署及配置
下载,解压tomcat.jdk 1.解压,链接tomcat.jdk tar xf jdk-8u161-linux-x64.tar.gz .tar.gz .0_161/ /usr/local/ .0_1 ...
- CDHtmlDialog探索----Javascript与窗体交互
CDHtmlDialog提供了C++与网页的双向交互,通此一系统简单的宏调用可以把网页中各元素的事件直接映射到C++程序中,而在网页中调用C++功能代码就显的不那么直观了.归根结底交互的基理就是实现相 ...
- [Codeforces671D]Roads in Yusland
[Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...