原文链接https://www.cnblogs.com/zhouzhendong/p/CF-Gym100543B.html

题目传送门 - CF-Gym100543B

题意

  给定一个折线图,对于每一条折线,问沿着这条折线往右看第一个看到的线段的编号(如果视线恰好看到上端点,则当没看见)

  放张图片助于理解:

  

  折线图用 $n$ 个点来描述。

  $n\leq 100000,\ \ \ \ 坐标范围:(x,y)|0\leq x,y\leq 10^9$

题解

  这题好妙啊。

  首先一个结论:如果射线与一段区间的点形成的上凸壳相交,那么他一定与这段区间内的折线段相交。

  我们只需要建个线段树,所有节点上建一个当前节点所表示的区间内的点构成的上凸壳,然后每次 $O(\log^2 n)$ 询问即可。

  如何 $O(\log^2 n)$ 询问?

  首先,线段树一只 $\log$ 。

  我们需要支持的是一只 $\log$ 判断射线是否与上凸壳相交。

  显然原线段与上凸壳的点的叉积是一个单峰函数。(根据叉积的定义,平行四边形的低不变,高为单峰函数,故面积也为单峰函数)

  于是显然可以三分搞定。

  但是被卡常数了。

  于是 foreverpiano 告诉了我一种巧妙的二分做法。

  (这里求叉积的点依次是线段左侧点,线段右侧点,当前点)

  对于每一次的 $mid$ ,我们看一看 原线段与凸壳上面的第 $mid$ 和 $mid+1$ 个点的叉积大小,分别记为 $v1$ 和 $v2$。

  如果 $v1>v2$ 则令 $R=mid-1$ 否则令 $L=mid+1$ 。

  注意一旦有 $v1>0$ 或者 $v2>0$ 就可以判断一定相交了。如果这个时候不return,则可能会有漏算。

  然后区间极小的时候暴力判。

  然后常数小了好多。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int T,n;
struct Point{
int x,y;
Point(){}
Point(int _x,int _y){
x=_x,y=_y;
}
}p[N],P[N];
vector <int> s[N<<3];
LL cross(Point a,Point b,Point c){
return 1LL*(b.x-a.x)*(c.y-a.y)-1LL*(c.x-a.x)*(b.y-a.y);
}
int read(){
char ch=getchar();
int x=0;
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x;
}
int st[N],top;
void Get_convex(vector <int> &s,int L,int R){
st[top=1]=R,st[++top]=R-1;
for (int i=R-2;i>=L;i--){
while (top>1&&cross(p[st[top-1]],p[st[top]],p[i])<=0)
top--;
st[++top]=i;
}
s.clear();
for (int i=top;i>0;i--)
s.push_back(st[i]);
}
void build(int rt,int L,int R){
if (L==R){
s[rt].clear();
s[rt].push_back(L);
return;
}
Get_convex(s[rt],L,R);
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
build(ls,L,mid);
build(rs,mid+1,R);
}
int Query(Point a,Point b,vector <int> &s){
int L=0,R=s.size()-1,mid;
while (L+3<=R){
mid=(L+R)>>1;
LL x=cross(a,b,p[s[mid]]),y=cross(a,b,p[s[mid+1]]);
if (x>0||y>0)
return 1;
if (x>y)
R=mid-1;
else
L=mid+1;
}
int now=-1;
for (int i=L;i<=R;i++)
if (cross(a,b,p[s[i]])>0)
return 1;
return 0;
}
int Query(int rt,int L,int R,int xL,int xR){
if (xL>xR||L>xR||R<xL||!Query(p[xL-2],p[xL-1],s[rt]))
return 0;
if (L==R)
return L-1;
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
int now=Query(ls,L,mid,xL,xR);
return now?now:Query(rs,mid+1,R,xL,xR);
}
int main(){
T=read();
while (T--){
n=read();
for (int i=1;i<=n;i++)
p[i].x=read(),p[i].y=read();
build(1,1,n);
for (int i=1;i<n;i++){
cout << Query(1,1,n,i+2,n);
if (i<n-1)
putchar(' ');
}
puts("");
}
return 0;
}

  

Codeforces Gym100543B 计算几何 凸包 线段树 二分/三分 卡常的更多相关文章

  1. Codeforces Gym 100231B Intervals 线段树+二分+贪心

    Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...

  2. Codeforces 431E Chemistry Experiment 线段树 + 二分

    Chemistry Experiment 维护一个权值线段树,然后二分答案. #include<bits/stdc++.h> #define LL long long #define LD ...

  3. Codeforces Gym 100803G Flipping Parentheses 线段树+二分

    Flipping Parentheses 题目连接: http://codeforces.com/gym/100803/attachments Description A string consist ...

  4. Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)

    题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n  n个数,然后求有多少个区间[l,r] 满足    a[l]+a[r]=max([l, ...

  5. Buses and People CodeForces 160E 三维偏序+线段树

    Buses and People CodeForces 160E 三维偏序+线段树 题意 给定 N 个三元组 (a,b,c),现有 M 个询问,每个询问给定一个三元组 (a',b',c'),求满足 a ...

  6. [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)

    [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...

  7. hdu4614 线段树+二分 插花

    Alice is so popular that she can receive many flowers everyday. She has N vases numbered from 0 to N ...

  8. 洛谷P4344 脑洞治疗仪 [SHOI2015] 线段树+二分答案/分块

    !!!一道巨恶心的数据结构题,做完当场爆炸:) 首先,如果你用位运算的时候不小心<<打成>>了,你就可以像我一样陷入疯狂的死循环改半个小时 然后,如果你改出来之后忘记把陷入死循 ...

  9. LOJ2401 JOISC2017 Dragon2 计算几何、线段树

    传送门 先考虑每一个攻击方的龙和被攻击方的龙可以与多少个被攻击方/攻击方的龙匹配. 对于攻击方的龙\(A\)和被攻击方的龙\(B\),在道路为线段\((C,D)\)的情况下,能够与下图位置的所有对应属 ...

随机推荐

  1. MySQL - 查看慢SQL

    查看MySQL是否启用了查看慢SQL的日志文件 (1) 查看慢SQL日志是否启用 mysql> show variables like 'log_slow_queries'; +-------- ...

  2. mariadb:分区自动创建与删除

    参考文章:https://blog.csdn.net/xlxxcc/article/details/52486426 1.以日自动创建与删除分区 调用示例:CALL proc_day_partitio ...

  3. [转载]RabbitMQ消息可靠性分析

    有很多人问过我这么一类问题:RabbitMQ如何确保消息可靠?很多时候,笔者的回答都是:说来话长的事情何来长话短说.的确,要确保消息可靠不只是单单几句就能够叙述明白的,包括Kafka也是如此.可靠并不 ...

  4. .NET NPOI操作Excel 让单元格的内容换行

    HSSFWorkbook workbook = new HSSFWorkbook(); // 工作簿 ISheet sheet = workbook.CreateSheet("会员列表&qu ...

  5. Android启动模式之singleinstance的坑

    前言 在实际应用中,使用singleinstance启动模式时,会遇到一些奇奇怪怪的问题.Android有四种启动模式,分别是standard,singleTop,singleTask,singleI ...

  6. HTML中特殊符号的处理

    一.写在前面 今天在写页面时记不清大/小于符号该怎么写,于是就想着整理一下方便后面用到! 二.HTML中常用特殊符号的处理    <    <   小于号或显示标记        > ...

  7. 3、SourceTree通过PUTTY连接GitLab

    一.生成公钥和私钥 使用命令行生成(两种生成方式选择一种即可) 1.安装SourceTree打开SourceTree,点击“命令行模式”. 2.输入如下命令生成key“example@example. ...

  8. MySQL外键使用详解

    一.基本概念 1.MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种.不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引.用于外键关系的字段必须 ...

  9. 20165314 2016-2017-2 《Java程序设计》第9周学习总结

    20165314 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 URl类 UDP数据报 广播数据报 套接字 套接字连接机制 代码托管

  10. springboot动态多数据源切换

    application-test.properties #datasource -- mysql multiple.datasource.master.url=jdbc:mysql://localho ...