[matlab] 19.matlab 基础几何学
polyshape
函数可创建由二维顶点定义的多边形,并返回具有描述其顶点、实心区域和孔的各种属性的 polyshape
对象。例如,pgon = polyshape([0 0 1 1],[1 0 0 1])
将创建由四个点 (0,1)、(0,0)、(1,0) 和 (1,1) 定义的实心正方形。
pgon = polyshape(
从由 x 坐标向量和对应的 y 坐标向量定义的二维顶点创建 x
,y
)polyshape
。x
和 y
的长度必须相同,且至少要有三个元素。
pgon = polyshape([0 0 1 1],[1 0 0 1]);
figure(4)
plot(pgon)
polyshape 二维多边形构建
nsidedpoly 正多边形
pgon = nsidedpoly(n,Name,Value)
pgon1 = nsidedpoly(6);
pgon2 = nsidedpoly(6,'Center',[5 0],'SideLength',3);
figure(4)
plot([pgon1 pgon2])
axis equal
nsidedpoly(正多边形)
polyarea 计算多边形的面积
L = linspace(0,2.*pi,100);
xv = 1.2*cos(L)';
yv = 1.2*sin(L)';
xx=1.1*cos(L)';
yy=1.1*sin(L)';
AA=polyshape(xv,yv);
AAA=polyshape(xx,yy); plot(AA);
hold on;
plot(AAA);
title(['Area = ' num2str(A)])
axis image A = polyarea(xv,yv) %计算面积
polyarea 计算多边形面积
inpolygon 位于多边形区域边缘内部或边缘上的点
in = inpolygon(xq,yq,xv,yv) 返回 in
,以指明 xq
和 yq
所指定的查询点是在 xv
和 yv
定义的多边形区域的边缘内部还是在边缘上
[
还返回 in
,on
] = inpolygon(xq
,yq
,xv
,yv
)on
以指明查询点是否位于多边形区域的边缘。
clc,clear all;
L = linspace(0,2.*pi,100);
xv1 = 1.2*cos(L)';
yv1 = 1.2*sin(L)';
xv2=0.4*cos(L)';
yv2=0.4*sin(L)'; Round1=polyshape(xv1,yv1);
Round2=polyshape(xv2,yv2);
Round1Area = polyarea(xv1,yv1)
Round2Area = polyarea(xv2,yv2) rng default %恢复matlab启动时默认的全局随机流
xq = randn(250,1); %随机生成250个正态分布点
yq = randn(250,1); %随机生成250个正态分布点 in = inpolygon(xq,yq,xv1,yv1); % numel(xq(in))查看在几何体内部的数量
figure(4)
plot(Round1); %画第一个圆
hold on;
plot(Round2); %画第二个圆
plot(xq(in),yq(in),'r+') % 标记在内部的点
plot(xq(~in),yq(~in),'bo') % 标记在外部的点
hold off
title(['Area1,Area2 = ' num2str(Round1Area),num2str(Round2Area)])
axis equal
axis image
凸多边形内的点
axes('xlim',[0 10],'ylim',[0 10])
a=[1 1 2 2];
b=[3 4 5 6];
c=[1 1 3 3];
figure
rectangle('position',a,'EdgeColor', 'r');
rectangle('position',b,'EdgeColor', 'b');
rectangle('position',c,'EdgeColor', 'k'); area_ab = rectint(a,b)
area_ac = rectint(a,c)
rectint 矩形交叉区域
area = rectint(A,B)
返回位置向量 A
和 B
指定的矩形的交叉区域。
如果 A
和 B
分别指定一个矩形,则输出 area
为标量。
A
和 B
还可以是矩阵,其中每行是一个位置向量。area
是一个矩阵,为 B
指定的所有矩形提供 A
指定的所有矩阵的交叉区域。即,如果 A
是 n
×4
并且 B
是 m
×4
,则 area
是 n
×m
矩阵,其中 area(i,j)
是 A
的第 i
行和 B
的第 j
行指定的矩形的交叉区域。
a=1;b=1.5;d=0:360;
x=a*cosd(d);
y=b*sind(d);
figure(1),cla
patch(x+0.6,y+0.2,'b','edgecolor','none','facealpha',0.15);%不透明度0.15
patch(x-0.6,y-0.2,'b','edgecolor','none','facealpha',0.15);%不透明度0.15
patch(x-0.2,y+0.9,'b','edgecolor','none','facealpha',0.15);%不透明度0.15
patch(x+0.2,y-0.9,'b','edgecolor','none','facealpha',0.15);%不透明度0.15
axis equal
box on;
set(gcf,'color','w');
半透明重叠加深 patch函数
v1 = [2 4; 2 8; 8 4];
f1 = [1 2 3];
figure
patch('Faces',f1,'Vertices',v1,'FaceColor','red','FaceAlpha',.3); v2 = [2 4; 2 8; 8 8];
f2 = [1 2 3];
patch('Faces',f2,'Vertices',v2,'FaceColor','blue','FaceAlpha',.5);
通过将 FaceAlpha 属性设置为 0 和 1 之间的值,创建两个半透明的多边形。
boundary 二维或三维空间内的一组点的边界
x = gallery('uniformdata',3000,1,1);
y = gallery('uniformdata',3000,1,10); plot(x,y,'k.')
xlim([-0.3 1.2])
ylim([-0.3 1.2])
k = boundary(x,y); %返回一个表示包围点 (x,y) 的单个相容二维边界的点索引向量。收缩因子为1
hold on;
line(x(k),y(k),'color','b'); j = boundary(x,y,0.01); %收缩因子为0.1 最大为1 越大包裹性越紧
line(x(j),y(j),'color','r'); [~, vol] = boundary(x,y); %包围点形成的形状的体积 或 面积
axis equal;
vol %返回 包围的体积或者面积
boundary 二维或三维空间内的一组点的边界
[~, vol] = boundary(x,y); %包围点形成的形状的体积
axis equal;
vol 可以输出二维平面 各个点包围的面积
P = gallery('uniformdata',30,3,5);
subplot(1,2,1);
plot3(P(:,1),P(:,2),P(:,3),'.','MarkerSize',10)
axis equal;
grid on
k = boundary(P);
hold on
subplot(1,2,2);
trisurf(k,P(:,1),P(:,2),P(:,3),'Facecolor','red','FaceAlpha',0.1) %收缩因子默认0
[~, vol] = boundary(P); %包围点形成的形状的体积
axis equal;
vol %体积
三维
[~, vol] = boundary(P); vol 返回体积
convhull 凸包
xx = -1:.05:1;
yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'bo')
二维凸包
alphaShape 依据二维和三维中的点构建的多边形和多面体
th = (pi/12:pi/12:2*pi)';
x1 = [reshape(cos(th)*(1:5), numel(cos(th)*(1:5)),1); 0];
y1 = [reshape(sin(th)*(1:5), numel(sin(th)*(1:5)),1); 0];
x = [x1; x1+15];
y = [y1; y1];
subplot(1,2,1)
plot(x,y,'.')
axis equal
subplot(1,2,2)
shp = alphaShape(x,y); %默认 alpha 半径可生成带不规则边界的 alpha 形状。
shp.Alpha = 2.5; % 要更好地捕获点集边界,请尝试更大的alpha 半径。
plot(shp)
axis equal
alphaShape alphaShape 创建一个可将一组二维或三维点包围起来的边界面或三维体。
delaunayTriangulation
使用 delaunayTriangulation
对象可以基于一组点创建二维或三维 Delaunay 三角剖分。对于二维数据,您也可以指定边约束。
P = gallery('uniformdata',[30 2],0);
DT = delaunayTriangulation(P);
IC = incenter(DT);
triplot(DT) %绘制 Delaunay 三角剖分
hold on
plot(IC(:,1),IC(:,2),'*r')
绘图
[matlab] 19.matlab 基础几何学的更多相关文章
- 第二章 Matlab面向对象编程基础
DeepLab是一款基于Matlab面向对象编程的深度学习工具箱,所以了解Matlab面向对象编程的特点是必要的.笔者在做Matlab面向对象编程的时候发现无论是互联网上还是书店里卖的各式Matlab ...
- Matlab面向对象编程基础
DeepLab是一款基于Matlab面向对象编程的深度学习工具箱,所以了解Matlab面向对象编程的特点是必要的.笔者在做Matlab面向对象编程的时候发现无论是互联网上还是书店里卖的各式Matlab ...
- [.net 面向对象编程基础] (19) LINQ基础
[.net 面向对象编程基础] (19) LINQ基础 上两节我们介绍了.net的数组.集合和泛型.我们说到,数组是从以前编程语言延伸过来的一种引用类型,采用事先定义长度分配存储区域的方式.而集合是 ...
- 机器学习及其matlab实现—从基础到实践
第1周 MATLAB入门基础 第2周 MATLAB进阶与提高 第3周 BP神经网络 第4周 RBF.GRNN和PNN神经网络 第5周 竞争神经网络与SOM神经网络 第6周 支持向量机(Support ...
- Python matlab octave 矩阵运算基础
基础总结,分别在三种软件下,计算 求逆矩阵 矩阵转置 等运算,比较异同 例子:正规方程法求多元线性回归的最优解 θ=(XTX)-1XTY octave: pwd()当前目录 ones() zeros( ...
- 2014.08.04,读书,读书笔记-《Matlab概率与数理统计分析》-第1章 MATLAB的数据基础
第1章 MATLAB数据基础 虽然一直间或使用MATLAB,但从来没有系统的学习过,现在开始也不晚.先对几个重点或者平时忽略的要点做下笔记. %后的所有文字为注释,多条命令可以放在一行,但要用逗号或分 ...
- 【Matlab】调试基础
1.matlab 调试子程序 在主程序进入子程序前一句加断点,然后step in,可以进入子程序. 但是直接在子程序里设置断点,运行主程序是不能进入子程序的.
- MATLAB的一些基础知识
1.已知a1=sin(sym(pi/4)+exp(sym(0.7)+sym(pi/3)))产生精准符号数字,请回答:以下产生的各种符号数哪些是精准的?若不精准,误差又是多少?能说出产生误差的原因吗? ...
- MATLAB数字图像处理基础
图像的输入.输出和显示 1.图像的输入 imread('filename'), 实际中写的是 >> f = imread('sky.jpg'); 2.图像的显示 imshow ...
随机推荐
- Netty实战十之编解码器框架
编码和解码,或者数据从一种特定协议的格式到另一种格式的转换.这些任务将由通常称为编解码器的组件来处理.Netty提供了多种组件,简化了为了支持广泛的协议而创建自定义的编解码器的过程.例如,如果你正在构 ...
- Java IO(2)阻塞式输入输出(BIO)
在上文中<Java IO(1)基础知识——字节与字符>了解到了什么是字节和字符,主要是为了对Java IO中有关字节流和字符流有一个更好的了解. 本文所述的输出输出指的是Java中传统的I ...
- 洛谷P4578 [FJOI2018]所罗门王的宝藏(dfs)
题意 题目链接 Sol 对于每个询问\(x, y, c\) 从在\((x, y)\)之间连一条边权为\(c\)的双向边,然后就是解\(K\)个二元方程. 随便带个数进去找找环就行了 #include& ...
- Django之初识Ajax
1.简介 AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步的Javascript和XML”.即使用Javascript语言与服务器进行异步交互,传输的数据 ...
- Vivox9怎么录制屏幕
手机怎么录屏是很多手机党一直提出的问题,而且经常发生录制的视频没有声音的现象,现在就给大家推荐一款软件,不仅能完美的录制视频,而且还可以完整的将视频声音录制下来,下面看看Vivox9怎么录制屏幕吧! ...
- matlab练习程序(局部加权线性回归)
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局 ...
- SQL Server中sys.syslogin中updatedate字段的浅析
在系统视图sys.syslogins中,有createdate与updatedate两个字段,分别表示创建登录名与更新登录名的日期,如果你用updatedate的值来判断一个登录名的权限是否被修改过, ...
- C#-枚举(十三)
概念 枚举是一组命名整型常量 枚举类型是使用 enum 关键字声明的 例如定义一个变量,该变量的值表示一周中的一天: enum Days { Sunday, Monday, Tuesday, Wedn ...
- 通过linkserver不能调远程表值函数
Question: 通过linkserver调远程表值函数报错如下 Solution: 注意:查询语句中的[SDS_NONEDI].[DBO].ddddd(),不能加server名[sdsc2-1]. ...
- 自动化测试基础篇--Selenium多窗口、句柄问题
摘自https://www.cnblogs.com/sanzangTst/p/7680402.html 有时我们在打开浏览器浏览网页时,当点击网页上某些链接时,它不是直接在当前页面上跳转,而是重新打开 ...