原文链接:https://developers.google.com/machine-learning/crash-course/training-and-test-sets

测试集是用于评估根据训练集开发的模型的数据集。

1- 拆分数据

可将单个数据集拆分为一个训练集和一个测试集。

  • 训练集 - 用于训练模型的子集。
  • 测试集 - 用于测试训练后模型的子集。

训练集的规模越大,模型的学习效果越好。
测试集规模越大,对于评估指标的信心越充足,置信区间就越窄。
在创建一个能够很好地泛化到新数据模型的过程中,测试集充当了新数据的代理。
拆分数据的一些注意事项:

  • 两个数据集必须相互独立。
  • 确保先进行随机化,再拆分数据。
  • 如果数据集规模很小,可能需要执行诸如交叉验证之类较为复杂的操作。

确保测试集满足以下两个条件:

  • 规模足够大,可产生具有统计意义的结果。
  • 能代表整个数据集。换言之,挑选的测试集的特征应该与训练集的特征相同。

请勿对测试数据进行训练。
如果评估指标取得了意外的好结果,则可能表明您不小心对测试集进行了训练。例如,高准确率可能表明测试数据泄露到了训练集。

举例说明
假设一个模型要预测某封电子邮件是否是垃圾邮件,它使用主题行、邮件正文和发件人的电子邮件地址作为特征。
按照 80-20 的拆分比例将数据拆分为训练集和测试集。
在训练之后,该模型在训练集和测试集上均达到了 99% 的精确率,原本预计测试集上的精确率会低于此结果。
因此再次查看数据后发现,测试集中的很多样本与训练集中的样本是重复的(由于疏忽,在拆分数据之前,没有将输入数据库中的相同垃圾邮件重复条目清理掉)。
无意中对一些测试数据进行了训练,因此无法再准确衡量该模型泛化到新数据的效果。

2- 关键词

过拟合 (overfitting)
创建的模型与训练数据过于匹配,以致于模型无法根据新数据做出正确的预测。

测试集 (test set)
数据集的子集,用于在模型经由验证集的初步验证之后测试模型。
与训练集和验证集相对。

训练集 (training set)
数据集的子集,用于训练模型。
与验证集和测试集相对。

机器学习入门06 - 训练集和测试集 (Training and Test Sets)的更多相关文章

  1. sklearn获得某个参数的不同取值在训练集和测试集上的表现的曲线刻画

    from sklearn.svm import SVC from sklearn.datasets import make_classification import numpy as np X,y ...

  2. 随机切分csv训练集和测试集

    使用numpy切分训练集和测试集 觉得有用的话,欢迎一起讨论相互学习~Follow Me 序言 在机器学习的任务中,时常需要将一个完整的数据集切分为训练集和测试集.此处我们使用numpy完成这个任务. ...

  3. sklearn学习3----模型选择和评估(1)训练集和测试集的切分

    来自链接:https://blog.csdn.net/zahuopuboss/article/details/54948181 1.sklearn.model_selection.train_test ...

  4. sklearn——train_test_split 随机划分训练集和测试集

    sklearn——train_test_split 随机划分训练集和测试集 sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http: ...

  5. Sklearn-train_test_split随机划分训练集和测试集

    klearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http://scikit-learn.org/stable/modules/gener ...

  6. 将dataframe分割为训练集和测试集两部分

    data = pd.read_csv("./dataNN.csv",',',error_bad_lines=False)#我的数据集是两列,一列字符串,一列为0,1的labelda ...

  7. 用python制作训练集和测试集的图片名列表文本

    # -*- coding: utf-8 -*- from pathlib import Path #从pathlib中导入Path import os import fileinput import ...

  8. python 将数据随机分为训练集和测试集

    # -*- coding: utf-8 -*- """ Created on Tue Jun 23 15:24:19 2015 @author: hd "&qu ...

  9. Python数据预处理—训练集和测试集数据划分

    使用sklearn中的函数可以很方便的将数据划分为trainset 和 testset 该函数为sklearn.cross_validation.train_test_split,用法如下: > ...

随机推荐

  1. UVa540

    //先输入队伍的个数 //用map建立数组将队伍序号和个人序号相互对应 //三条命令 #include <bits/stdc++.h> using namespace std; ; int ...

  2. Vue 中使用 viewerjs进行本地上传预览图片

    https://www.cnblogs.com/shenjp/p/9754171.html 如果图片路径是 接口的返回信息的话,将路径存储在数组中,在this.$nextTick中实例化Viewer: ...

  3. Finance财务软件(引入业务系统凭证专题)

    我们通过自定义存储过程从业务系统引入凭证 我们需要以下适配 1.设置业务系统数据库链接 2.在自定义模板中设置存储过程名称及入参,这里的功能键值必须为_InterfaceExec,保留字段作为存储过程 ...

  4. python3 第二十七章 - 内置函数之str相关

    Python 的字符串常用内建函数如下: 序号 方法及描述 实例 1 capitalize()将字符串的第一个字符转换为大写   2 center(width, fillchar) 返回一个指定的宽度 ...

  5. TwinStickShooter的一些问题

    TwinStickShooter模板应该是比较好的了解UE基本Pawn和Projectile的一个C++例子.以下是一些问题. 一.这个模板以纯C++编写,没有蓝图,所以第一步,我想测试下如何引用蓝图 ...

  6. SpringBoot处理日期转换问题

    前台传一个datetime类型的数据即yyyy-MM-dd HH:mm:ss格式的数据黑后台controller,结果发现接收到的对象为yyyy-MM-dd 00:00:00,处理这个问题可以在con ...

  7. 使用C#重写网上的60行 Javascript 俄罗斯方块源码 (带注释)

    在很久很久以前,就已经看过 60行Js的俄罗斯方块源码.无奈当时能力不够看明白,当时觉得就是个神作. 现在总算有空再看了,顺便用c#实现一遍(超过60行),顺道熟悉下Js API. 网上其他博客也有分 ...

  8. 计蒜客 2019 蓝桥杯省赛 B 组模拟赛(三)一笔画

    #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> us ...

  9. 第九周助教工作总结——NWNU李泓毅

    1.助教博客链接: https://www.cnblogs.com/NWNU-LHY/ 2.作业要求博客链接: https://www.cnblogs.com/nwnu-daizh/p/1072688 ...

  10. Java程序设计(第二版)复习 第二章

    1.Java使用Unicode字符集,一般用16位二进制表示一个字符.且Java中午sizeof关键字,因为所有基本数据类型长度是确定的,不依赖执行环境. 2. Java变量在声明时并没有分配内存,真 ...