Description

有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
Input

第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
Output

仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
Sample Input
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
Sample Output
1
问题规模
(1)矩阵中的所有数都不超过1,000,000,000
(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10
(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100

看了题解,过了好几天又看这道题,感慨万分,好久不做RMQ果然什么都忘了

就是先做一遍右边的,把右边n格的最大值最小值存到最左边这一格

然后做一遍向下的,把下面n格的最值存到这一格,现在,每一个n*n的正方形的信息都存到左上角了,扫一遍就行了

 const
maxn=;
var
a,b:array[..maxn,..maxn]of longint;
n,m,k:longint; procedure down(var x:longint;y:longint);
begin
if x>y then x:=y;
end; procedure up(var x,y:longint);
begin
if x<y then x:=y;
end; procedure main;
var
i,j,l,s,ans:longint;
begin
read(n,m,k);
for i:= to n do
for j:= to m do
begin
read(a[i,j]);
b[i,j]:=a[i,j];
end;
l:=;
while l<k do
begin
for i:= to n do
for j:= to m do
begin
s:=j+l;
down(s,m-l+);
down(s,j+k-l);
up(a[i,j],a[i,s]);
down(b[i,j],b[i,s]);
end;
l:=l<<;
end;
l:=;
while l<k do
begin
for i:= to n do
for j:= to m do
begin
s:=i+l;
down(s,n-l+);
down(s,i+k-l);
up(a[i,j],a[s,j]);
down(b[i,j],b[s,j]);
end;
l:=l<<;
end;
ans:=maxlongint;
for i:= to n-k+ do
for j:= to m-k+ do
down(ans,a[i,j]-b[i,j]);
write(ans);
end; begin
main;
end.

结果写完就被鄙视了,z55250825 ORZ,其实可以用单调队列

 const
maxn=;
var
a,b:array[..maxn,..maxn]of longint;
n,m,k,ans:longint; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; procedure init;
var
i,j:longint;
begin
read(n,m,k);
for i:= to n do
for j:= to m do
begin
read(a[i,j]);
b[i,j]:=a[i,j];
end;
end; var
q:array[..maxn,..]of longint;
head,tail:longint; procedure work;
var
i,j:longint;
begin
for i:= to n do
begin
head:=;
tail:=;
for j:= to m do
begin
while (tail>=head) and (q[tail,]<=a[i,j]) do
dec(tail);
inc(tail);
q[tail,]:=j;
q[tail,]:=a[i,j];
while q[head,]<=j-k do
inc(head);
a[i,j]:=q[head,];
end;
end;
for j:= to m do
begin
head:=;
tail:=;
for i:= to n do
begin
while (tail>=head) and (q[tail,]<=a[i,j]) do
dec(tail);
inc(tail);
q[tail,]:=i;
q[tail,]:=a[i,j];
while q[head,]<=i-k do
inc(head);
a[i,j]:=q[head,];
end;
end;
for i:= to n do
begin
head:=;
tail:=;
for j:= to m do
begin
while (tail>=head) and (q[tail,]>=b[i,j]) do
dec(tail);
inc(tail);
q[tail,]:=j;
q[tail,]:=b[i,j];
while q[head,]<=j-k do
inc(head);
b[i,j]:=q[head,];
end;
end;
for j:= to m do
begin
head:=;
tail:=;
for i:= to n do
begin
while (tail>=head) and (q[tail,]>=b[i,j]) do
dec(tail);
inc(tail);
q[tail,]:=i;
q[tail,]:=b[i,j];
while q[head,]<=i-k do
inc(head);
b[i,j]:=q[head,];
end;
end;
ans:=maxlongint;
for i:=k to n do
for j:=k to m do
ans:=min(ans,a[i,j]-b[i,j]);
write(ans);
end; begin
init;
work;
end.

Wikioi上实在是过不了,然后写了一个C++的

 #include<cstdio>
using namespace std; const int maxn=; int a[maxn][maxn],b[maxn][maxn],n,m,k,ans; int min(int x,int y)
{
return(x<y?x:y);
} void init()
{
int i,j;
scanf("%d%d%d",&n,&m,&k);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
scanf("%d",&a[i][j]),b[i][j]=a[i][j];
} int q[maxn][],head,tail; void work()
{
int i,j;
for(i=;i<=n;i++)
{
head=;tail=;
for(j=;j<=m;j++)
{
while(tail>=head & q[tail][]<=a[i][j])--tail;
tail++;
q[tail][]=j;
q[tail][]=a[i][j];
while(q[head][]<=j-k)head++;
a[i][j]=q[head][];
}
}
for(j=;j<=m;j++)
{
head=;tail=;
for(i=;i<=n;i++)
{
while(tail>=head & q[tail][]<=a[i][j])tail--;
tail++;
q[tail][]=i;
q[tail][]=a[i][j];
while(q[head][]<=i-k)head++;
a[i][j]=q[head][];
}
}
for(i=;i<=n;i++)
{
head=;tail=;
for(j=;j<=m;j++)
{
while(tail>=head & q[tail][]>=b[i][j])tail--;
tail++;
q[tail][]=j;
q[tail][]=b[i][j];
while(q[head][]<=j-k)head++;
b[i][j]=q[head][];
}
}
for(j=;j<=m;j++)
{
head=;tail=;
for(i=;i<=n;i++)
{
while(tail>=head & q[tail][]>=b[i][j])tail--;
tail++;
q[tail][]=i;
q[tail][]=b[i][j];
while(q[head][]<=i-k)head++;
b[i][j]=q[head][];
}
}
ans=;
for(i=k;i<=n;i++)
for(j=k;j<=m;j++)
ans=min(ans,a[i][j]-b[i][j]);
printf("%d",ans);
} int main()
{
init();
work();
return ;
}

1047: [HAOI2007]理想的正方形 - BZOJ的更多相关文章

  1. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  2. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  3. [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】

    题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...

  4. 【BZOJ】1047: [HAOI2007]理想的正方形(单调队列/~二维rmq+树状数组套树状数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 树状数组套树状数组真心没用QAQ....首先它不能修改..而不修改的可以用单调队列做掉,而且更 ...

  5. BZOJ 1047: [HAOI2007]理想的正方形

    题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...

  6. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  7. bzoj 1047: [HAOI2007]理想的正方形【单调队列】

    没有复杂结构甚至不长但是写起来就很想死的代码类型 原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值 然后 ...

  8. 1047: [HAOI2007]理想的正方形

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4075  Solved: 2277[Submit][Status][Discuss] Descript ...

  9. bzoj千题计划215:bzoj1047: [HAOI2007]理想的正方形

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 先用单调队列求出每横着n个最大值 再在里面用单调队列求出每竖着n个的最大值 这样一个位置就代表 ...

随机推荐

  1. cogs 餐巾 461(贪心)

    /*虽然这暴力剪了又剪 改了又改 还是初始的20分...*/ #include<iostream> #include<cstdio> #include<cstring&g ...

  2. spring分布式事务学习笔记

    最近项目中使用了分布式事务,本文及接下来两篇文章总结一下在项目中学到的知识. 分布式事务对性能有一定的影响,所以不是最佳的解决方案,能通过设计避免最好尽量避免. 分布式事务(Distributed t ...

  3. xml使用系统整理

    1. 认识xml 可扩展标记语言,一种用于标记电子文档使其具有结果性的标记语言,它可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. 2. 和超文本标记语言区别 2.1 ...

  4. memcached缓存机制+微软缓存机制使用详解

    1. why Memcached 1.1   一台web服务器上,iis接收的请求数是有限的,当访问量超大的时候,网站访问就会遇到瓶颈了,处理方式就是运用多了服务器把请求数分流(集群),对外公布的就一 ...

  5. C#算法基础之插入排序

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. 浏览器userAgent大全

    iPhone ●iOSMozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko) Versi ...

  7. 第二篇、JavaScript常用的API

    下面是我整理的一些JavaScript常用的API清单. 目录 元素查找 class操作 节点操作 属性操作 内容操作 css操作 位置大小 事件 DOM加载完毕 绑定上下文 去除空格 Ajax JS ...

  8. Windows Forms (一)

    导读 1.什么是 Windows Forms 2.需要学Windows Forms 么? 3.如何手写一个简单的Windows Forms 程序 4.对上面程序的说明 5.Form 类与Control ...

  9. javascript笔记——jikeytang javascript前端群 389875212 精华总结

    网址: https://github.com/jsfront   //    http://www.kancloud.cn/jsfront/month/82796 内容: 前端js github总结, ...

  10. IE浏览器打开 「兼容性视图」

    有些IE上的网页控件需要打开兼容性视图才能使用,不知道是Javascript的原因,还是CSS的原因. 使用环境是用C语言配合boa服务器实现的CGI程序.