What is an eigenvector of a covariance matrix?
What is an eigenvector of a covariance matrix?
(More precisely, the first eigenvector is the direction in which the data varies the most, the second eigenvector is the direction of greatest variance among those that are orthogonal (perpendicular) to the first eigenvector, the third eigenvector is the direction of greatest variance among those orthogonal to the first two, and so on.)
Here is an example in 2 dimensions [1]:
Each data sample is a 2 dimensional point with coordinates x, y. The eigenvectors of the covariance matrix of these data samples are the vectors u and v; u, longer arrow, is the first eigenvector and v, the shorter arrow, is the second. (The eigenvalues are the length of the arrows.) As you can see, the first eigenvector points (from the mean of the data) in the direction in which the data varies the most in Euclidean space, and the second eigenvector is orthogonal (perpendicular) to the first.
It's a little trickier to visualize in 3 dimensions, but here's an attempt [2]:
In this case, imagine that all of the data points lie within the ellipsoid. v1, the direction in which the data varies the most, is the first eigenvector (lambda1 is the corresponding eigenvalue). v2 is the direction in which the data varies the most among those directions that are orthogonal to v1. And v3 is the direction of greatest variance among those directions that are orthogonal to v1 and v2 (though there is only one such orthogonal direction).
[1] Image taken from Duncan Gillies's lecture on Principal Component Analysis
[2] Image taken from Fiber Crossing in Human Brain Depicted with Diffusion Tensor MR Imaging
Anonymous
It turns out that the covariance of two such vectors x and y can be written as Cov(x,y)=xtAy. In particular, Var(x)=xtAx. This means that covariance is a Bilinear form.
Now, since A is a real symmetric matrix, there is an orthonormal basis for Rnof eigenvectors of A. Orthonormal in this case means that each vector's norm is 1 and they're orthogonal with respect to A, that is vt1Av2=0, or Cov(v1,v2)=0.
Next, suppose v is a unit eigenvector of A with eigenvalue λ. Then Var(v)=λ∥v∥2=λ.
There are a couple interesting conclusions we can draw from this. First, since the eigenvectors form a basis {v1,...,vn}, every linear combination of the original random variables can actually be represented as a linear combination of the independent random variables vi. Second, every unit vector's variance is a weighted average of the eigenvalues. This means that the leading eigenvector is the direction of greatest variance, the next eigenvector has the greatest variance in the orthogonal subspace, and so on.
So, sum up, eigenvectors are uncorrelated linear combinations of the original set of random variables.
The primary application of this is Principal Components Analysis. If you have n features, you can find eigenvectors of the covariance matrix of the features. This allows you to represent the data with uncorrelated features. Moreover, the eigenvalues tell you the amount of variance in each feature, allowing you to choose a subset of the features that retain the most information about your data.
Now, if this direction of the largest variance is axis-aligned (covariances are zero), then the eigenvalues simply correspond to the variances of the data:
It becomes a little more complicated if the covariance matrix is not diagonal, such that the covariances are not zero. In this case, the principal components (directions of largest variance) do no coincide with the axes, and the data is rotated. The eigenvalues then still correspond to the spread of the data in the direction of the largest variance, whereas the variance components of the covariance matrix still defines the spread of the data along the axes:
An in-depth discussion of how the covariance matrix can be interpreted from a geometric point of view (and the source of the above images) can be found on:A geometric interpretation of the covariance matrix
The eigenvectors are those variables that are linearly uncorrelated.
What is an eigenvector of a covariance matrix?的更多相关文章
- A geometric interpretation of the covariance matrix
A geometric interpretation of the covariance matrix Contents [hide] 1 Introduction 2 Eigendecomposit ...
- 方差variance, 协方差covariance, 协方差矩阵covariance matrix
https://www.jianshu.com/p/e1c8270477bc?utm_campaign=maleskine&utm_content=note&utm_medium=se ...
- 方差variance, 协方差covariance, 协方差矩阵covariance matrix | scatter matrix | weighted covariance | Eigenvalues and eigenvectors
covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望 ...
- covariance matrix 和数据分布情况估计
how to get data covariance matrix: http://stattrek.com/matrix-algebra/covariance-matrix.aspx meaning ...
- 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)
图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/ka ...
- 随机变量的方差variance & 随机向量的协方差矩阵covariance matrix
1.样本矩阵 如果是一个随机变量,那么它的样本值可以用一个向量表示.相对的,如果针对一个随机向量,那么就需要利用矩阵表示,因为向量中的每一个变量的采样值,都可以利用一个向量表示. 然后,一个矩阵可以利 ...
- A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy
A Beginner’s Guide to Eigenvectors, PCA, Covariance and Entropy Content: Linear Transformations Prin ...
- Ill-conditioned covariance create
http://www.mathworks.com/matlabcentral/answers/100210-why-do-i-receive-an-error-while-trying-to-gene ...
- 协方差(Covariance)
统计学上用方差和标准差来度量数据的离散程度 ,但是方差和标准差是用来描述一维数据的(或者说是多维数据的一个维度),现实生活中我们常常会碰到多维数据,因此人们发明了协方差(covariance),用来度 ...
随机推荐
- UML——综合实例
- java createSQLQuery().list()返回日期格式没有时分秒的解决方法
方法一 将Oracel数据库对应表中“收单时间的字段”receive_sheet_time,由原来的Date类型改为timestamp 然后,在java程序中,由 (java.util.timesta ...
- 4月8日学习笔记(js基础)
<script>标签放在<body>和<head> 放在 <head></head> 里的会比放在 <body></bod ...
- 使用Script元素发送JSONP请求
// 根据指定URL发送一个JSONP请求 //然后把解析得到的相应数据传递给回调函数 //在URL中添加一个名为jsonp的查询参数,用于指定该请求的回调函数的名称 function getJSON ...
- ZigBee2006,2007,pro各个版本的区别
文章转载自http://home.eeworld.com.cn/my/space-uid-361439-blogid-224722.html
- MFC中快速应用OpenCV(转)
转载链接:http://wiki.opencv.org.cn/index.php/MFC%E4%B8%AD%E5%BF%AB%E9%80%9F%E5%BA%94%E7%94%A8OpenCV 简介和缘 ...
- div嵌套引起的margin-top不起作用(转)
嵌套div中margin-top转移问题的解决办法在这两个浏览器中,有两个嵌套关系的div,如果外层div的父元素padding值为0,那么内层div的margin-top或者margin-botto ...
- SQL正常工作日上班安排
alter proc [work] as declare @i int begin id into #restdate from dt_work where work_date in (select ...
- 【转】 .NET中STAThread和MTAThread
ref:http://blog.csdn.net/dyllove98/article/details/9735955 1 COM中的公寓 本文讨论进程内COM组件.以一个示例直观演示STAThread ...
- 修改ECSHOP注册只需要email,并且使用email作为账号
现在很多主流的电商网站都直接用email作为会员账号,好处是省得用户既要想一个用户名,又要填邮箱,邮箱对于电商网站的重要性不用多提,因此用email作为会员的唯一标识是很合理的做法,本文给出针对ECS ...