scikit-learn一般实例之四:管道的使用:链接一个主成分分析和Logistic回归
主成分分析(PCA)进行无监督的降维,而逻辑回归进行预测.
我们使用GridSearchCV来设置PCA的维度
# coding:utf-8
from pylab import *
import numpy as np
from sklearn import linear_model, decomposition, datasets
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
logistic = linear_model.LogisticRegression()
pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])
digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target
绘制PCA图谱
myfont = matplotlib.font_manager.FontProperties(fname="Microsoft-Yahei-UI-Light.ttc")
mpl.rcParams['axes.unicode_minus'] = False
pca.fit(X_digits)
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.axes([.2, .2, .7, .7])
plt.plot(pca.explained_variance_, linewidth=2)
plt.axis('tight')
plt.xlabel(u'n_components',fontproperties=myfont)
plt.ylabel(u'解释方差',fontproperties=myfont)
plt.title(u"主成分分析谱",fontproperties=myfont)

预测
plt.clf()
n_components = [20, 40, 64]
Cs = np.logspace(-4, 4, 3)
estimator = GridSearchCV(pipe,
dict(pca__n_components=n_components,
logistic__C=Cs))
estimator.fit(X_digits, y_digits)
plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')
plt.legend(prop=myfont)
plt.title(u"预测",fontproperties=myfont)

scikit-learn一般实例之四:管道的使用:链接一个主成分分析和Logistic回归的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- Selenium2学习-031-WebUI自动化实战实例-029-JavaScript 在 Selenium 自动化中的应用实例之四(获取元素位置和大小)
通过 JS 或 JQuery 获取到元素后,通过 offsetLeft.offsetTop.offsetWidth.offsetHeight 即可获得元素的位置和大小,非常的简单,直接上源码了,敬请参 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 一起talk C栗子吧(第八十七回:C语言实例--使用管道进行进程间通信概述)
各位看官们,大家好.上一回中咱们说的是进程间通信的样例.这一回咱们说的样例是:使用管道进行进程间通信. 闲话休提,言归正转. 让我们一起talk C栗子吧! 我们在前面的的章回中介绍了使用管道进行进程 ...
- Entity Framework 的小实例:在项目中添加一个实体类,并做插入操作
Entity Framework 的小实例:在项目中添加一个实体类,并做插入操作 1>. 创建一个控制台程序2>. 添加一个 ADO.NET实体数据模型,选择对应的数据库与表(Studen ...
- 机器学习实战3:逻辑logistic回归+在线学习+病马实例
本文介绍logistic回归,和改进算法随机logistic回归,及一个病马是否可以治愈的案例.例子中涉及了数据清洗工作,缺失值的处理. 一 引言 1 sigmoid函数,这个非线性函数十分重要,f( ...
随机推荐
- 转:serialVersionUID作用
汗,以前学了还忘了... Java的序列化机制是通过在运行时判断类的serialVersionUID来验证版本一致性的.在进行反序列化时,JVM会把传来的字节流中的serialVersionUID与本 ...
- Linux上如何查看物理CPU个数,核数,线程数
首先,看看什么是超线程概念 超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的 ...
- Asp.Net WebApi核心对象解析(上篇)
生活需要自己慢慢去体验和思考,对于知识也是如此.匆匆忙忙的生活,让人不知道自己一天到晚都在干些什么,似乎每天都在忙,但又好似不知道自己到底在忙些什么.不过也无所谓,只要我们知道最后想要什么就行.不管怎 ...
- form表单验证-Javascript
Form表单验证: js基础考试内容,form表单验证,正则表达式,blur事件,自动获取数组,以及css布局样式,动态清除等.完整代码如下: <!DOCTYPE html PUBLIC &qu ...
- BPM与 SAP & Oracle EBS集成解决方案分享
一.需求分析 SAP和Oracle EBS都是作为全球顶级的的ERP产 品,得到了众多客户的青睐.然而由于系统庞大.价格昂贵以及定位不同,客户在实施过程中经常会面临以下困惑: 1.SAP如何实现&qu ...
- Angular2 Hello World 之 2.0.0-beta.14
公司现在采用angualrjs开发一些web应用,采用的是angular1,现在angular2已经差不多了,听说最近rc6已经出来了……其实感觉好慢啊!之前也做过一些anglar2的例子,但是没有记 ...
- SQL-类型转换函数
CAST ( expression AS data_type)CONVERT ( data_type, expression,[style]) Select '您的班级编号'+ 1 错误这里+是数学 ...
- SQL Server事务、视图和索引
废话不多说,直接上干货 14:13:23 事务 概括:事务是一种机制,一个操作序列,包含一组数据库操作命令,并且把所有的命令作为一个整体一起 向系统提交或撤销操作 请求. 事务的特性: 1.原子性 ...
- 跟着老男孩教育学Python开发【第四篇】:模块
双层装饰器示例 __author__ = 'Golden' #!/usr/bin/env python # -*- coding:utf-8 -*- USER_INFO = {} def ch ...
- C#迪杰斯特拉算法
C#迪杰斯特拉算法 网上有许多版本的,自己还是写一个理解点 Dijkstra.cs public class Dijkstra { private List<Node> _nodes; p ...