poj 2983 差分约束
思路:
设dis[i]为标号为i的点到0号点的距离。对于P A B X,我们能得到等式dis[a]-dis[b]=x,那么可以化为两个不等式dis[a]-dis[b]>=x和dis[b]-dis[a]>=-x。这样就可以建两条边。V A B的话,我们知道dis[a]-dis[b]>=1,可以建一条边。这些边建起来后,图可能是一个离散的图,那么我们就定义一个超级源点连接所有的点,权值为0.进行求最长路时,只要判断是否有正圈存在,正圈的含义是绕着这个圈使每个点的dis值不断增大。用bellman-ford算法就行。还有一个笨的方法,其实是卡数据的,我们就用spfa求最长路,若循环次数超过一定,我们就认为有正圈存在。
这个是用bellman_ford做的:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 1<<30
#define Maxn 10010
#define Maxm 500000
using namespace std;
int dis[Maxn],vi[Maxn],index[Maxn],e,Que[],num=,n;
struct Edge{
int to,next,val,from;
}edge[Maxm];
void init()
{
int i,j;
for( i=;i<=Maxn-;i++)
dis[i]=-inf;
memset(vi,,sizeof(vi));
memset(index,-,sizeof(index));
e=;
num=;
}
void addedge(int from,int to,int val)
{
edge[e].from=from;
edge[e].to=to;
edge[e].val=val;
edge[e].next=index[from];
index[from]=e++;
}
int bellman_ford()
{
int i,j,temp,flag;
for(i=;i<=n;i++)
{
flag=;
for(j=;j<e;j++)
{
temp=edge[j].from;
if(dis[temp]+edge[j].val>dis[edge[j].to])
{
dis[edge[j].to]=dis[temp]+edge[j].val;
flag=;
}
}
if(flag)
return ;
}
return ;
}
int main()
{
int i,j,a,b,c,m;
char str[];
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
//cout<<"ok"<<endl;
for(i=;i<=m;i++)
{
scanf("%s",&str);
if(str[]=='P')
{
scanf("%d%d%d",&a,&b,&c);
addedge(b,a,c);
addedge(a,b,-c);
}
else
{
scanf("%d%d",&a,&b);
addedge(b,a,);
}
}
for(i=;i<=n;i++)
addedge(,i,);
if(bellman_ford())
printf("Reliable\n");
else
printf("Unreliable\n");
}
return ;
}
给个卡数据的spfa:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define inf 1<<30
#define Maxn 10010
#define Maxm 500000
using namespace std;
int dis[Maxn],vi[Maxn],index[Maxn],e,Que[],num=;
struct Edge{
int to,next,val;
}edge[Maxm];
void init()
{
int i,j;
for( i=;i<=Maxn-;i++)
dis[i]=-inf;
memset(vi,,sizeof(vi));
memset(index,-,sizeof(index));
e=;
num=;
}
void addedge(int from,int to,int val)
{
edge[e].from=from;
edge[e].to=to;
edge[e].val=val;
edge[e].next=index[from];
index[from]=e++;
}
int spfa()
{
int i,j,temp,head,rear;
head=rear=;
Que[head++]=;
dis[]=;
//cout<<maxn<<endl;
while(head!=rear)
{
temp=Que[rear++];
//cout<<temp<<endl;
vi[temp]=;
for(i=index[temp];i!=-;i=edge[i].next)
{
int now=edge[i].to;
if(dis[now]<dis[temp]+edge[i].val)
{
num++;
if(num>)
return ;
if(edge[i].val<)
{
dis[temp]+edge[i].val+graphic[now][temp]
}
dis[now]=dis[temp]+edge[i].val;
if(!vi[now])
Que[head++]=now;
vi[now]=;
}
}
}
return ;
}
int main()
{
int i,j,n,a,b,c,m;
char str[];
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
//cout<<"ok"<<endl;
for(i=;i<=m;i++)
{
scanf("%s",&str);
if(str[]=='P')
{
scanf("%d%d%d",&a,&b,&c);
addedge(b,a,c);
addedge(a,b,-c);
}
else
{
scanf("%d%d",&a,&b);
addedge(b,a,);
}
}
for(i=;i<=n;i++)
addedge(,i,);
if(spfa())
printf("Reliable\n");
else
printf("Unreliable\n");
}
return ;
}
poj 2983 差分约束的更多相关文章
- poj 3159(差分约束经典题)
题目链接:http://poj.org/problem?id=3159思路:题目意思很简单,都与给定的条件dist[b]-dist[a]<=c,求dist[n]-dist[1]的最大值,显然这是 ...
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
- poj 1201 差分约束
http://www.cnblogs.com/wangfang20/p/3196858.html 题意: 求集合Z中至少要包含多少个元素才能是每个区间[ai,bi]中的元素与Z中的元素重合个数为ci. ...
- POJ - 3169 差分约束
题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如 果最大距离无限大则输出 ...
- POJ 1201 差分约束+SPFA
思路: 差分约束,难在建图.(我是不会告诉你我刚学会SPFA的...) 把每个区间的ai–>bi连一条长度为ci的边. k–>k+1连一条长度为0的边. k+1–>k连一条长度为-1 ...
- POJ 1201 差分约束(集合最小元素个数)
题意: 给你一个集合,然后有如下输入,a ,b ,c表示在范围[a,b]里面有至少有c个元素,最后问你整个集合最少多少个元素. 思路: 和HDU1384一模一样,首先这个题目可 ...
- poj 1716 差分约束
水水的. 给几个不等式:dis[b]-dis[a]>=2; 0<=dis[i+1]-dis[i]<=1; #include<iostream> #include< ...
- poj 3159 差分约束
思路:班长的糖果要比snoopy的多.并且要用手写堆栈,且堆栈的大小要开到20000000. #include<iostream> #include<cstdio> #incl ...
- poj 1364 差分约束
思路:设dis[i]为从0点到第i点的序列总和.那么对于A B gt k 来讲意思是dis[B+A]-dis[A]>k; 对于A B lt k来讲就是dis[B+A]-dis[A]<k; ...
随机推荐
- HTML+CSS+JS学习总结
HTML: 什么是 HTML? HTML 是用来描述网页的一种语言. HTML 指的是超文本标记语言 (Hyper Text Markup Language) HTML 不是一种编程语言,而是一种标记 ...
- WebBrowser实现编辑网页
//1.显示网页 procedure TForm2.FormCreate(Sender: TObject); begin Panel1.Align := alTop; CheckBox1.Anchor ...
- Jvm基础(2)-Java内存模型
Jvm基础(2)-Java内存模型 主内存和工作内存 Java内存模型包括主内存和工作内存两个部分:主内存用来存储线程之间的共享变量:而工作内存中存储每个线程的相关变量. 如下图所示: 需要注意的是: ...
- C C++实现创建目录
下面代码是C.C++可以使用的创建目录的函数及头文件,这是引用的opencv,haartraining中的一种方式. #include <direct.h> //不同系统可能不一样,这是在 ...
- 工具栏停靠实现(toolbar docking)
// TODO: 如果不需要工具栏可停靠,则删除这三行 m_ToolBar_File.EnableDocking(CBRS_ALIGN_ANY); EnableDocking(CBRS_ALIGN_A ...
- Spring和Hibernate集成的HibernateTemplate的一些常用方法总结
1:get/load存取单条数据 public Teacher getTeacherById(Long id) { return (Teacher)this.hibernateTemplate.get ...
- 【博客迁移】hityixiaoyang.com
用了快两年简洁的cnblog现在迁移到新域名空间:http://blog.apluslogicinc.com 欢迎来踩啊~~~
- Swift学习笔记五
基础运算符 Swift的大部分运算符和C及OC相同,也分一元二元多元的,这里只记录一些Swift特有的性质或写法. 赋值运算符( = ) 在等号右边是一个有多个值的元组时,它的成员值可以分解并同时分别 ...
- synthesize(合成) keyword in IOS
synthesize creates setter and getter (从Objective-C 2.0开始,合成可自动生成存取方法) the setter is used by IOS to s ...
- C#程序实现动态调用DLL的研究[转]
摘 要: 在< csdn 开发高手> 2004 年第 03 期中的<化功大法——将 DLL 嵌入 EXE >一文,介绍了如何把一个动态链接库作为一个资源嵌入到可执行文件,在 ...