题意:

从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序)

分析:

虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是不知道怎么应用。

这里有关于莫比乌斯反演的知识,而且最后的例题中就有这道题并给出了公式的推导。

在最后的例题2中有个重要的结论:

 #include <cstdio>
#include <algorithm>
typedef long long LL; const int maxn = ;
int mu[maxn + ], vis[maxn + ], prime[maxn], cnt; void Mobius()
{
mu[] = ;
cnt = ;
for(int i = ; i <= maxn; ++i)
{
if(!vis[i])
{
mu[i] = -;
prime[cnt++] = i;
}
for(int j = ; j < cnt && i*prime[j] <= maxn; ++j)
{
vis[i*prime[j]] = ;
if(i % prime[j] != ) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
} int main()
{
//freopen("1695in.txt", "r", stdin); Mobius();
int T;
scanf("%d", &T);
for(int kase = ; kase <= T; ++kase)
{
int a, b, c, d, k;
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k); if(k == )
{
printf("Case %d: 0\n", kase);
continue;
} b /= k, d /= k;
if(b > d) std::swap(b, d);
LL hehe = , haha = ;
for(int i = ; i <= b; ++i)
hehe += (LL)mu[i] * (b/i) * (d/i);
for(int i = ; i <= b; ++i)
haha += (LL)mu[i] * (b/i) * (b/i); //因为题目不区分xy的顺序,所以要减去重复的部分
LL ans = hehe - haha/; printf("Case %d: %I64d\n", kase, ans);
} return ;
}

HDU 1695 (莫比乌斯反演) GCD的更多相关文章

  1. GCD HDU - 1695 莫比乌斯反演入门

    题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...

  2. hdu 1695(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. HDU 4746 (莫比乌斯反演) Mophues

    这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...

  4. 数学:莫比乌斯反演-GCD计数

    Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以 ...

  5. HDU 5212 莫比乌斯反演

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  6. HDU 6053(莫比乌斯反演)

    题意略. 思路:首先想到暴力去扫,这样的复杂度是n * min(ai),对于gcd = p,对答案的贡献应该是 (a1 / p) * (a2 / p) * .... * (an / p),得出这个贡献 ...

  7. hdu 4746Mophues[莫比乌斯反演]

    Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

  8. 算术 HDU - 6715 (莫比乌斯反演)

    大意: 给定$n,m$, 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu(lcm(i,j))$ 首先有$\mu(lcm(i,j))=\mu(i)\mu(j)\m ...

  9. HDU 4746 莫比乌斯反演+离线查询+树状数组

    题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...

随机推荐

  1. foxmail创建163公司企业邮箱的时候会出现ERR Unable to log on

    foxmail创建163公司企业邮箱的时候会出现ERR Unable to log on 解决办法:把pop.qiye.163.com更改为pop.ym.163.com,瞬间创建成功....也许是网易 ...

  2. C#中Linq查询基本操作

    摘要:本文介绍Linq查询基本操作(查询关键字) - from 子句 - where 子句 - select子句 - group 子句 - into 子句 - orderby 子句 - join 子句 ...

  3. Maven--(一个坑)在settings.xml文件中添加mirrors导致无法新建Maven项目

    这是用新电脑第一次创建Maven项目--当然是一个测试项目.已经差不多忘了该怎样做,所以参考我的博客:http://www.cnblogs.com/wql025/p/4996486.html,这应该是 ...

  4. action间传多个参数时注意问题

    通常我们action之间传参可以有多种形式,举例说明:示例1: <result name="test" type="redirect-action"> ...

  5. 编译为 Release 与 Debug 的区别

    class Program { static void Main(string[] args) { DoWork(); } static void DoWork() { new Person().Ru ...

  6. 运用 DataContractSerializer 存储本地对象

    public void Save(string filename,State state) { DataContractSerializer ds = new DataContractSerializ ...

  7. json封装与解析

    #include <iostream> #include <boost/property_tree/ptree.hpp> #include <boost/property ...

  8. linux源码阅读笔记 asm函数

    在linux源码中经常遇到__asm__函数.它其实是函数asm的宏定义 #define __asm__ asm,asm函数让系统执行汇编语句. __asm__常常与__volatile__一起出现. ...

  9. 【转】Wireshark:“There are no interfaces on which a capture can be done ”

    linux环境下 两种解决方案:    第一种方法:使用root用户登陆        xiaoshancun@xiaoshancun-VM500:~$ sudo wireshark    第二种方法 ...

  10. sparse coding稀疏表达入门

    最近在看sparse and redundant representations这本书,进度比较慢,不过力争看过的都懂,不把时间浪费掉.才看完了不到3页吧,书上基本给出了稀疏表达的概念以及传统的求法. ...