DP?

Problem Description

Figure
1 shows the Yang Hui Triangle. We number the row from top to bottom
0,1,2,…and the column from left to right 0,1,2,….If using C(n,k)
represents the number of row n, column k. The Yang Hui Triangle has a
regular pattern as follows.
C(n,0)=C(n,n)=1 (n ≥ 0)
C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
Write
a program that calculates the minimum sum of numbers passed on a route
that starts at the top and ends at row n, column k. Each step can go
either straight down or diagonally down to the right like figure 2.
As the answer may be very large, you only need to output the answer mod p which is a prime.
 
Input
Input
to the problem will consists of series of up to 100000 data sets. For
each data there is a line contains three integers n,
k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is
terminated by end-of-file.
 
Output
For
every test case, you should output "Case #C: " first, where C indicates
the case number and starts at 1.Then output the minimum sum mod p.
 
Sample Input
1 1 2
4 2 7
 
Sample Output
Case #1: 0
Case #2: 5
 
思路:Lucas定理正好适用于p较小的组合数取模问题;由于很多组查询,所以只能预处理出每个素数对应的每个每个值的阶乘值;
Lucas定理:C(n,m)=C([n/p],[m/p]) * C(a0,b0)  (mod p);
这是我们能容易地求解出终点的值,但是如果我们是一层一层地加到边界,再找还有多少个1?这样直接T了,现在就需要帕斯卡公式还计算这个sigma和了;
帕斯卡公式:
1.  C(n+1,m) = C(n,m) + C(n-1,m-1)+...+C(n-m,0);  当m <= n/2时,斜向上走到左边界,之后还有n - m个1
2.  C(n+1,m+1) = C(n-1,m) + C(n-2,m)+...+C(n-m,m); 一直竖直向上走到右边界,之后还有m个1
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
#include<map>
#include<queue>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef pair<int,int> PII;
#define A first
#define B second
#define MK make_pair
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
T x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
if(a>) out(a/);
putchar(a%+'');
}
const int N = ;
int prime[N],check[N];
void getprime()
{
for(int i = ;i < N;i++)if(!check[i]){
prime[i] = ++prime[];
for(int j = i*i;j < N;j += i)
check[j] = ;
}
}
int f[][N];
void init()
{
getprime();
for(int i = ;i <= N;i++){
if(prime[i] == ) continue;
int id = prime[i];
f[id][] = ;
for(int j = ;j < N;j++)
f[id][j] = f[id][j-]*j%i;
}
}
int pow_mod(int a,int n,int p)
{
int ans = ;
while(n){
if(n & ) ans = ans*a%p;
a = a*a%p;
n >>= ;
}
return ans;
}
int C(int n,int m,int p)
{
if(n < m) return ;
if(n == m) return ;
int id = prime[p];
int a = f[id][n],b = f[id][m]*f[id][n - m]%p;
return a*pow_mod(b,p-,p)%p;
}
int Lucas(int n,int m,int p)
{
if(m == ) return ;
if(m == ) return n%p;
return C(n%p,m%p,p)*Lucas(n/p,m/p,p)%p;
}
int main()
{
init();
int n,m,p,kase = ;
while(scanf("%d%d%d",&n,&m,&p) == ){
if(m <= n/) m = n - m;
int ans = Lucas(n + ,m + ,p);
printf("Case #%d: %d\n",kase++,(ans + m)%p);
}
return ;
}

hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)的更多相关文章

  1. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  2. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  3. [转]组合数取模 Lucas定理

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...

  4. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  5. [hdu5226]组合数求和取模(Lucas定理)

    题意:给一个矩阵a,a[i][j] = C[i][j](i>=j) or 0(i < j),求(x1,y1),(x2,y2)这个子矩阵里面的所有数的和. 思路:首先问题可以转化为求(0,0 ...

  6. HDU 5698 大组合数取模(逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  7. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  8. lucas定理解决大组合数取模

    LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...

  9. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

随机推荐

  1. WordPress搭建Personal Blog

    早就想搭建一个专属于自己的博客了,用来记录自己生活.学习的点点滴滴.之所以选WordPress,主要是因为它可以支持Latex,而且特别喜欢其简约的风格. WordPress有个the famous ...

  2. java_jdbc_可滚动结果集与分页

    public static void create2(int i) { Connection conn = null; Statement st = null; ResultSet rs = null ...

  3. 条件阻塞Condition的应用

    Condition的功能类似在传统线程技术中的Object.wait和Object.notity的功能.   例子:生产者与消费者 import java.util.Random; import ja ...

  4. javascript获取随机颜色

    方案一: function getRandomColor(){ var str = "0123456789abcdef"; var t = "#"; for(j ...

  5. 关于JFace中的输入值(InputDialog)对话框类

    格式: InputDialog(Shell parentShell, String dialogTitle, String dialogMessage, String initialValue, In ...

  6. Bootloader简介

    来介绍一下Bootloader,在专用的嵌入式开发板上运行GNU/Linux 系统已经变得越来越流行.一个嵌入式Linux 系统从软件的角度看通常可以分为四个层次: 1.引导加载程序.包括固化在固件( ...

  7. 【字符串排序,技巧!】UVa 10905 - Children’s Game

    There are lots of number games for children. These games are pretty easy to play but not so easy to ...

  8. PV模型

    你想建设一个能承受500万PV/每天的网站吗? 500万PV是什么概念?服务器每秒要处理多少个请求才能应对?如果计算呢? 一.PV是什么 PV是page view的简写.PV是指页面的访问次数,每打开 ...

  9. 关于 I/O Wait

    I/O wait is a per-CPU performance metric showing time spent idle, when there are threads on the CPU ...

  10. ACM——第几天

    第几天 时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte总提交 : 1830            测试通过 : 525 描 ...