DP?

Problem Description

Figure
1 shows the Yang Hui Triangle. We number the row from top to bottom
0,1,2,…and the column from left to right 0,1,2,….If using C(n,k)
represents the number of row n, column k. The Yang Hui Triangle has a
regular pattern as follows.
C(n,0)=C(n,n)=1 (n ≥ 0)
C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
Write
a program that calculates the minimum sum of numbers passed on a route
that starts at the top and ends at row n, column k. Each step can go
either straight down or diagonally down to the right like figure 2.
As the answer may be very large, you only need to output the answer mod p which is a prime.
 
Input
Input
to the problem will consists of series of up to 100000 data sets. For
each data there is a line contains three integers n,
k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is
terminated by end-of-file.
 
Output
For
every test case, you should output "Case #C: " first, where C indicates
the case number and starts at 1.Then output the minimum sum mod p.
 
Sample Input
1 1 2
4 2 7
 
Sample Output
Case #1: 0
Case #2: 5
 
思路:Lucas定理正好适用于p较小的组合数取模问题;由于很多组查询,所以只能预处理出每个素数对应的每个每个值的阶乘值;
Lucas定理:C(n,m)=C([n/p],[m/p]) * C(a0,b0)  (mod p);
这是我们能容易地求解出终点的值,但是如果我们是一层一层地加到边界,再找还有多少个1?这样直接T了,现在就需要帕斯卡公式还计算这个sigma和了;
帕斯卡公式:
1.  C(n+1,m) = C(n,m) + C(n-1,m-1)+...+C(n-m,0);  当m <= n/2时,斜向上走到左边界,之后还有n - m个1
2.  C(n+1,m+1) = C(n-1,m) + C(n-2,m)+...+C(n-m,m); 一直竖直向上走到右边界,之后还有m个1
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
#include<map>
#include<queue>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef pair<int,int> PII;
#define A first
#define B second
#define MK make_pair
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
T x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
if(a>) out(a/);
putchar(a%+'');
}
const int N = ;
int prime[N],check[N];
void getprime()
{
for(int i = ;i < N;i++)if(!check[i]){
prime[i] = ++prime[];
for(int j = i*i;j < N;j += i)
check[j] = ;
}
}
int f[][N];
void init()
{
getprime();
for(int i = ;i <= N;i++){
if(prime[i] == ) continue;
int id = prime[i];
f[id][] = ;
for(int j = ;j < N;j++)
f[id][j] = f[id][j-]*j%i;
}
}
int pow_mod(int a,int n,int p)
{
int ans = ;
while(n){
if(n & ) ans = ans*a%p;
a = a*a%p;
n >>= ;
}
return ans;
}
int C(int n,int m,int p)
{
if(n < m) return ;
if(n == m) return ;
int id = prime[p];
int a = f[id][n],b = f[id][m]*f[id][n - m]%p;
return a*pow_mod(b,p-,p)%p;
}
int Lucas(int n,int m,int p)
{
if(m == ) return ;
if(m == ) return n%p;
return C(n%p,m%p,p)*Lucas(n/p,m/p,p)%p;
}
int main()
{
init();
int n,m,p,kase = ;
while(scanf("%d%d%d",&n,&m,&p) == ){
if(m <= n/) m = n - m;
int ans = Lucas(n + ,m + ,p);
printf("Case #%d: %d\n",kase++,(ans + m)%p);
}
return ;
}

hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)的更多相关文章

  1. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  2. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  3. [转]组合数取模 Lucas定理

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...

  4. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  5. [hdu5226]组合数求和取模(Lucas定理)

    题意:给一个矩阵a,a[i][j] = C[i][j](i>=j) or 0(i < j),求(x1,y1),(x2,y2)这个子矩阵里面的所有数的和. 思路:首先问题可以转化为求(0,0 ...

  6. HDU 5698 大组合数取模(逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  7. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  8. lucas定理解决大组合数取模

    LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...

  9. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

随机推荐

  1. HDU 4259 - Double Dealing(求循环节)

    首先将扑克牌进行一次置换,然后分解出所有的循环节,所有循环节的扑克牌个数的最小公倍数即为答案 #include <stdio.h> #include <string.h> #i ...

  2. 如何查找局域网的外网ip

    方法一:一个简单的方法 用你电脑打开www.ip138.com 就可以看到自己的公网IP地址 方法二:如果一定要从路由器里面看 那就打开路由的配置页面 一般在系统状态里面 会有个WAN口IP 那就是你 ...

  3. 如何强化 TCP/IP 堆栈

    TCP/IP 是一种本质上不安全的协议.但是,Windows 2000 实现可以使您配置其操作以防止网络的拒绝服务攻击.默认情况下,本文中所涉及的一些项和值可能并不存在.在这些情况下,请创建该项.值或 ...

  4. centos6.5 安装jdk7和tomcat7

    JDK安装: 安装说明 系统环境:centos-6.5安装方式:rpm安装软件:jdk-7-linux-x64.rpm下载地址:http://www.oracle.com/technetwork/ja ...

  5. 利用动画+div的前后切换实现轮播

    可以利用两块div(分别设为前和后),用绝对定位使两块div重合,再利用z-index实现两块div的堆叠顺序(即显示的变换),利用动画和定时器实现轮播,这就是基本的思路. 完整的顺序如下: 1.先设 ...

  6. android小结

    一. 对与java读写文件的操作: 字节流: //filename  可以是文件名,可以是文件路径 FileOutputStream outputStream=new FileOutputStream ...

  7. 基于Selenium2+Java的UI自动化(3) - 页面元素定位

    一.几种网页定位方式 webdriver的页面定位很灵活,提供了8种定位方式: 其中,常见的有三种:id .cssSelector .xpath: 一个元素如果存在 id 属性,则这个 id 的值,在 ...

  8. Guzzle Unable to parse JSON data: JSON_ERROR_SYNTAX - Syntax error, malformed JSON

    项目更新到正式平台时,出现Guzzle(5.3) client get请求出现:Unable to parse JSON data: JSON_ERROR_SYNTAX - Syntax error, ...

  9. oracle“记录被另一个用户锁住”

    1.查看数据库锁,诊断锁的来源及类型: select object_id,session_id,locked_mode from v$locked_object; 或者用以下命令: select b. ...

  10. html元素拖拽

    html <div> <div class="money-input"> 定投金额 : <div class="input-rela&quo ...