Description

两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即:

现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数。请帮助她解决这个问题
Input

第一行包含3个正整数n,d,k,分别表示向量的个数,维数以及待检测的倍数。
接下来n行每行有d个非负整数,其中第i行的第j个整数表示向量xi的第j维权值xi,j。
Output

包含两个整数,用空格隔开。
如果存在两个向量xp,xq的内积为k的整数倍,则输出两个向量的编号p与q(要求p<q)。如果存在多组这样的向量组合,输出其中任意一组即可。
若不存在这样的向量组合,则输出两个-1。
Sample Input
Sample Output
HINT

话说每次我都把题目复制一遍充字数2333

k=2时

我们把n个向量拼在一起,变成一个n*d的矩阵,设它为A,然后D=A*A’,A’为A的转置矩阵(行列互换),发现D[i,j]就表示向量i和向量j的内积

假设无解的话那么D矩阵除了对角线以外其他都是1,我们把无解的这个矩阵求出来设为C(只要求对角线),然后判断C和D是否相等,相等就无解

于是随机生成一个1*n的矩阵X判断X*A*A’是否等于X*C,假设不等于的话我们就找出不相等的那个位置,假设是第i个不相等,那就肯定存在一个j使得向量i与向量j的内积mod k=0

所以这个就暴力判断一下

k=3时

我们不能确定矩阵C的样子了,因为有三种情况0,1,2

但是我们发现1^2 mod 3=1,2^2 mod 3=1,所以我们让这个矩阵的元素都平方一下,那么矩阵C又变成了除了对角线其他都是1

但是前面又不好算了,其实也很好算,内积的平方拆开就变成了d^2维的向量的内积(空间存不下,直接照着式子算就行了)

其实随机生成矩阵不是很好,为0的话就没有用了,所以我直接用了全都是1的矩阵来跑答案

由于时间实在卡得太紧,我在Wikioi下了数据(可惜Wikioi没有spj)然后当提答题在bzoj上交了233

 const
maxn=;
maxd=;
var
a:array[..maxn,..maxd]of longint;
b,c,x,y:array[..maxn]of longint;
n,d,k:longint; procedure work2;
var
i,j,k,s:longint;
begin
s:=;
for i:= to n do s:=s xor x[i];
for i:= to n do c[i]:=s xor x[i] xor(x[i] and y[i]);
for i:= to n do
for j:= to d do
b[j]:=b[j] xor (x[i] and a[i,j]);
for i:= to d do x[i]:=b[i];
for i:= to d do b[i]:=;
for i:= to d do
for j:= to n do
b[j]:=b[j] xor (x[i] and a[j,i]);
for i:= to n do
if b[i]<>c[i] then
begin
for j:= to n do
if i<>j then
begin
s:=;
for k:= to d do
s:=s xor (a[i,k] and a[j,k]);
if s= then
begin
writeln(i,' ',j);
exit;
end;
end;
end;
writeln('-1 -1');
end; procedure work3;
var
i,j,k,s:longint;
begin
s:=;
for i:= to n do if y[i]> then y[i]:=;
for i:= to n do inc(s,x[i]);
for i:= to n do c[i]:=(s-x[i]+x[i]*y[i])mod ;
for i:= to n do
for j:= to d do
for k:= to d do
inc(b[(j-)*d+k],x[i]*a[i,j]*a[i,k]);
for i:= to d*d do
begin
x[i]:=b[i]mod ;
b[i]:=;
end;
for i:= to d do
for j:= to d do
for k:= to n do
inc(b[k],x[(i-)*d+j]*a[k,i]*a[k,j]);
for i:= to n do b[i]:=b[i]mod ;
for i:= to n do
if b[i]<>c[i] then
begin
for j:= to n do
if i<>j then
begin
s:=;
for k:= to d do
s:=s+a[i,k]*a[j,k];
if s mod = then
begin
writeln(i,' ',j);
exit;
end;
end;
end;
writeln('-1 -1')
end; procedure main;
var
i,j:longint;
begin
read(n,d,k);
for i:= to n do
for j:= to d do
begin
read(a[i,j]);
a[i,j]:=a[i,j]mod k;
end;
for i:= to n do x[i]:=random(k);
for i:= to n do
for j:= to d do
y[i]:=y[i]+a[i,j]*a[i,j];
for i:= to n do y[i]:=y[i]mod k;
if k= then work2
else work3;
end; begin
randomize;
main;
end.

3243: [Noi2013]向量内积 - BZOJ的更多相关文章

  1. bzoj 3243: [Noi2013]向量内积

    Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...

  2. 【fake题解】[NOI2013]向量内积

    [fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...

  3. [Noi2013]向量内积

    来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...

  4. P1224 [NOI2013]向量内积

    传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...

  5. luogu P1224 [NOI2013]向量内积

    传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向 ...

  6. BZOJ3243 NOI2013向量内积(随机化)

    考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1 ...

  7. 【uoj121】 NOI2013—向量内积

    http://uoj.ac/problem/121 (题目链接) 题意 给出${n}$个${d}$维向量,问是否有两个不同的向量的内积是${k}$的倍数. Solution 又卡了一上午常数,我弃了T ...

  8. BZOJ3243/UOJ121 [Noi2013]向量内积

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  9. BZOJ3243 [Noi2013]向量内积 【乱搞】

    题目链接 BZOJ3243 题解 模数只有\(2\)或\(3\),可以大力讨论 如果模数为\(2\),乘积结果只有\(1\)或\(0\) 如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量 ...

随机推荐

  1. MarkFan的程序员客栈

    历史上的今天:2013-12-27 跨平台移动开发 App-Framework DEMO 演示

  2. 设置WinForm窗体及程序图标

    自己留着看,总是用的时候给忘记了,百度来百度去的麻烦. 设置 Ico 图标为 [资源文件] 项目名à右键à属性,在选项卡中选择"资源"   选择 "添加资源"à ...

  3. DNS服务器搭建

    注意正式运行的dns服务器主dns设置 中没有启用转发器,所以部分网页如taobao解析时可能很慢.开启转发器即可转发器地址指向电信dns. [root@master ~]# lsb_release ...

  4. UI2_IOS坐标系

    // // AppDelegate.m // UI2_IOS坐标系 // // Created by zhangxueming on 15/6/29. // Copyright (c) 2015年 z ...

  5. ubuntu下安装git,sublime,nodejs

    用的是VMware10.0版本的虚拟机,很早之前下载的今天就直接用了,安装挺简单记得需要一个序列号.在这里:http://mirrors.163.com/ubuntu-releases/15.04/u ...

  6. 九款酷炫基于jquery实现的应用及源码

    1.HTML5 Loading动画加载 五彩的圆环Loading 今天我们要分享一款基于HTML5的Loading加载动画特效,这款HTML5加载动画是一个五彩的圆环,圆环不停地转动从而体现加载正在进 ...

  7. VC和VS系列(2005)编译器对双精度浮点溢出的处理

    作者:风影残烛 在还原代码的过程中.目前程序是采用VS2005(以上版本)写的. 我使用的是vc6.0,结果.在运算的时候.发现编译器对 // FpuTlxTest.cpp : 定义控制台应用程序的入 ...

  8. activiti源码分析(一)设计模式

    对activiti有基本了解的朋友都知道,activiti暴露了七个接口来提供工作流的相关服务,这些接口具体是如何实现的呢?查看源码发现其实现的形式大体如下: public class Runtime ...

  9. centos6.5下的mysql5.6.30安装

    1.解压mysql tar -xf mysql-5.6.30-linux-glibc2.5-x86_64.tar.gz  -C /usr/local mv mysql-5.6.30-linux-gli ...

  10. Linux多命令协作:管道及重定向