0x00 ElasticSearch的索引和MySQL的索引方式对比

Elasticsearch是通过Lucene的倒排索引技术实现比关系型数据库更快的过滤。特别是它对多条件的过滤支持非常好,比如年龄在18和30之间,性别为女性这样的组合查询。

倒排索引很多地方都有介绍,但是其比关系型数据库的b-tree索引快在哪里?到底为什么快呢?

笼统的来说,b-tree索引是为写入优化的索引结构。当我们不需要支持快速的更新的时候,可以用预先排序等方式换取更小的存储空间,更快的检索速度等好处,其代价就是更新慢。要进一步深入的化,还是要看一下Lucene的倒排索引是怎么构成的。

这里有好几个概念。我们来看一个实际的例子,假设有如下的数据:

这里每一行是一个document。每个document都有一个docid。那么给这些document建立的倒排索引就是:

可以看到,倒排索引是per field的,一个字段由一个自己的倒排索引。18,20这些叫做 term,而[1,3]就是posting list。Posting list就是一个int的数组,存储了所有符合某个term的文档id。那么什么是term dictionary 和 term index?

假设我们有很多个term,比如:

Carla,Sara,Elin,Ada,Patty,Kate,Selena

如果按照这样的顺序排列,找出某个特定的term一定很慢,因为term没有排序,需要全部过滤一遍才能找出特定的term。排序之后就变成了:

Ada,Carla,Elin,Kate,Patty,Sara,Selena

这样我们可以用二分查找的方式,比全遍历更快地找出目标的term。这个就是 term dictionary。有了term dictionary之后,可以用 logN 次磁盘查找得到目标。但是磁盘的随机读操作仍然是非常昂贵的(一次random access大概需要10ms的时间)。所以尽量少的读磁盘,有必要把一些数据缓存到内存里。但是整个term dictionary本身又太大了,无法完整地放到内存里。于是就有了term index。term index有点像一本字典的大的章节表。比如:

A开头的term ……………. Xxx页

C开头的term ……………. Xxx页

E开头的term ……………. Xxx页

如果所有的term都是英文字符的话,可能这个term index就真的是26个英文字符表构成的了。但是实际的情况是,term未必都是英文字符,term可以是任意的byte数组。而且26个英文字符也未必是每一个字符都有均等的term,比如x字符开头的term可能一个都没有,而s开头的term又特别多。实际的term index是一棵trie 树:

例子是一个包含 "A", "to", "tea", "ted", "ten", "i", "in", 和 "inn" 的 trie 树。

这棵树不会包含所有的term,它包含的是term的一些前缀。通过term index可以快速地定位到term dictionary的某个offset,然后从这个位置再往后顺序查找。再加上一些压缩技术(搜索 Lucene Finite State Transducers) term index 的尺寸可以只有所有term的尺寸的几十分之一,使得用内存缓存整个term index变成可能。整体上来说就是这样的效果。

现在我们可以回答“为什么Elasticsearch/Lucene检索可以比mysql快了。Mysql只有term dictionary这一层,是以b-tree排序的方式存储在磁盘上的。检索一个term需要若干次的random access的磁盘操作。而Lucene在term dictionary的基础上添加了term index来加速检索,term index以树的形式缓存在内存中。从term index查到对应的term dictionary的block位置之后,再去磁盘上找term,大大减少了磁盘的random access次数。

额外值得一提的两点是:term index在内存中是以FST(finite state transducers)的形式保存的,其特点是非常节省内存。Term dictionary在磁盘上是以分block的方式保存的,一个block内部利用公共前缀压缩,比如都是Ab开头的单词就可以把Ab省去。这样term dictionary可以比b-tree更节约磁盘空间。

0x01 ElasticSearch的联合索引查询

所以给定查询过滤条件 age=18 的过程就是先从term index找到18在term dictionary的大概位置,然后再从term dictionary里精确地找到18这个term,然后得到一个posting list或者一个指向posting list位置的指针。然后再查询 gender=女 的过程也是类似的。最后得出 age=18 AND gender=女 就是把两个 posting list 做一个“与”的合并。

这个理论上的“与”合并的操作可不容易。对于mysql来说,如果你给age和gender两个字段都建立了索引,查询的时候只会选择其中最selective的来用,然后另外一个条件是在遍历行的过程中在内存中计算之后过滤掉。那么要如何才能联合使用两个索引呢?有两种办法:

  • 使用skip list数据结构。同时遍历gender和age的posting list,互相skip;
  • 使用bitset数据结构,对gender和age两个filter分别求出bitset,对两个bitset做AN操作。

PostgreSQL 从 8.4 版本开始支持通过bitmap联合使用两个索引,就是利用了bitset数据结构来做到的。当然一些商业的关系型数据库也支持类似的联合索引的功能。Elasticsearch支持以上两种的联合索引方式,如果查询的filter缓存到了内存中(以bitset的形式),那么合并就是两个bitset的AND。如果查询的filter没有缓存,那么就用skip list的方式去遍历两个on disk的posting list。

1. 利用 Skip List 合并

以上是三个posting list。我们现在需要把它们用AND的关系合并,得出posting list的交集。首先选择最短的posting list,然后从小到大遍历。遍历的过程可以跳过一些元素,比如我们遍历到绿色的13的时候,就可以跳过蓝色的3了,因为3比13要小。

整个过程如下

Next -> 2
Advance(2) -> 13
Advance(13) -> 13
Already on 13
Advance(13) -> 13 MATCH!!!
Next -> 17
Advance(17) -> 22
Advance(22) -> 98
Advance(98) -> 98
Advance(98) -> 98 MATCH!!!

最后得出的交集是[13,98],所需的时间比完整遍历三个posting list要快得多。

但是前提是每个list需要指出Advance这个操作,快速移动指向的位置。什么样的list可以这样Advance往前做蛙跳?

skip list:

从概念上来说,对于一个很长的posting list,比如:

[1,3,13,101,105,108,255,256,257]

我们可以把这个list分成三个block:

[1,3,13] [101,105,108] [255,256,257]

然后可以构建出skip list的第二层:

[1,101,255]

1,101,255分别指向自己对应的block。这样就可以很快地跨block的移动指向位置了。

Lucene自然会对这个block再次进行压缩。其压缩方式叫做Frame Of Reference编码。示例如下:

考虑到频繁出现的term(所谓low cardinality的值),比如gender里的男或者女。如果有1百万个文档,那么性别为男的posting list里就会有50万个int值。用Frame of Reference编码进行压缩可以极大减少磁盘占用。这个优化对于减少索引尺寸有非常重要的意义。当然mysql b-tree里也有一个类似的posting list的东西,是未经过这样压缩的。

因为这个Frame of Reference的编码是有解压缩成本的。利用skip list,除了跳过了遍历的成本,也跳过了解压缩这些压缩过的block的过程,从而节省了cpu。

2. 利用bitset合并

Bitset是一种很直观的数据结构,对应posting list如:

[1,3,4,7,10]

对应的bitset就是:

[1,0,1,1,0,0,1,0,0,1]

每个文档按照文档id排序对应其中的一个bit。Bitset自身就有压缩的特点,其用一个byte就可以代表8个文档。所以100万个文档只需要12.5万个byte。但是考虑到文档可能有数十亿之多,在内存里保存bitset仍然是很奢侈的事情。而且对于个每一个filter都要消耗一个bitset,比如age=18缓存起来的话是一个bitset,18<=age<25是另外一个filter缓存起来也要一个bitset。

所以秘诀就在于需要有一个数据结构:

  • 可以很压缩地保存上亿个bit代表对应的文档是否匹配filter;
  • 这个压缩的bitset仍然可以很快地进行AND和 OR的逻辑操作。

Lucene使用的这个数据结构叫做 Roaring Bitmap。

其压缩的思路其实很简单。与其保存100个0,占用100个bit。还不如保存0一次,然后声明这个0重复了100遍。

这两种合并使用索引的方式都有其用途。Elasticsearch对其性能有详细的对比(https://www.elastic.co/blog/frame-of-reference-and-roaring-bitmaps)。简单的结论是:因为Frame of Reference编码是如此 高效,对于简单的相等条件的过滤缓存成纯内存的bitset还不如需要访问磁盘的skip list的方式要快。

0x02 ElasticSearch中的文档压缩

一种常见的压缩存储时间序列的方式是把多个数据点合并成一行。Opentsdb支持海量数据的一个绝招就是定期把很多行数据合并成一行,这个过程叫compaction。类似的vivdcortext使用mysql存储的时候,也把一分钟的很多数据点合并存储到mysql的一行里以减少行数。

这个过程可以示例如下:

合并之后就变成了:

可以看到,行变成了列了。每一列可以代表这一分钟内一秒的数据。

Elasticsearch有一个功能可以实现类似的优化效果,那就是Nested Document。我们可以把一段时间的很多个数据点打包存储到一个父文档里,变成其嵌套的子文档。示例如下:

{timestamp:12:05:01, idc:sz, value1:10,value2:11}
{timestamp:12:05:02, idc:sz, value1:9,value2:9}
{timestamp:12:05:02, idc:sz, value1:18,value:17}

可以打包成:

{
max_timestamp:12:05:02, min_timestamp: 1205:01, idc:sz,
records: [
{timestamp:12:05:01, value1:10,value2:11}
{timestamp:12:05:02, value1:9,value2:9}
{timestamp:12:05:02, value1:18,value:17}
]
}

这样可以把数据点公共的维度字段上移到父文档里,而不用在每个子文档里重复存储,从而减少索引的尺寸。

(图片来源:https://www.youtube.com/watch?v=Su5SHc_uJw8,Faceting with Lucene Block Join Query)

在存储的时候,无论父文档还是子文档,对于Lucene来说都是文档,都会有文档Id。但是对于嵌套文档来说,可以保存起子文档和父文档的文档id是连续的,而且父文档总是最后一个。有这样一个排序性作为保障,那么有一个所有父文档的posting list就可以跟踪所有的父子关系。也可以很容易地在父子文档id之间做转换。把父子关系也理解为一个filter,那么查询时检索的时候不过是又AND了另外一个filter而已。前面我们已经看到了Elasticsearch可以非常高效地处理多filter的情况,充分利用底层的索引。

使用了嵌套文档之后,对于term的posting list只需要保存父文档的doc id就可以了,可以比保存所有的数据点的doc id要少很多。如果我们可以在一个父文档里塞入50个嵌套文档,那么posting list可以变成之前的1/50。

参考

ELK学习笔记之ElasticSearch的索引详解的更多相关文章

  1. IP地址和子网划分学习笔记之《IP地址详解》

    2018-05-03 18:47:37   在学习IP地址和子网划分前,必须对进制计数有一定了解,尤其是二进制和十进制之间的相互转换,对于我们掌握IP地址和子网的划分非常有帮助,可参看如下目录详文. ...

  2. 零拷贝详解 Java NIO学习笔记四(零拷贝详解)

    转 https://blog.csdn.net/u013096088/article/details/79122671 Java NIO学习笔记四(零拷贝详解) 2018年01月21日 20:20:5 ...

  3. ELK学习笔记之ElasticSearch简介

    0x00 什么是Elasticsearch Elasticsearch (ES)是一个基于 Lucene 的开源搜索引擎,它不但稳定.可靠.快速,而且也具有良好的水平扩展能力,是专门为分布式环境设计的 ...

  4. linux命令学习笔记(25):linux文件属性详解

    Linux 文件或目录的属性主要包括:文件或目录的节点.种类.权限模式.链接数量.所归属的用户和用户组. 最近访问或修改的时间等内容.具体情况如下: 命令: ls -lih 输出: [root@loc ...

  5. Java学习笔记 线程池使用及详解

    有点笨,参考了好几篇大佬们写的文章才整理出来的笔记.... 字面意思上解释,线程池就是装有线程的池,我们可以把要执行的多线程交给线程池来处理,和连接池的概念一样,通过维护一定数量的线程池来达到多个线程 ...

  6. [读书笔记]C#学习笔记八:StringBuilder与String详解及参数传递问题剖析

    前言 上次在公司开会时有同事分享windebug的知识, 拿的是string字符串Concat拼接 然后用while(true){}死循环的Demo来讲解.其中有提及string操作大量字符串效率低下 ...

  7. 学习笔记——Maven pom.xml配置详解

    POM的全称是“ProjectObjectModel(项目对象模型)”. pom.xml详解 声明规范 <projectxmlns="http://maven.apache.org/P ...

  8. IOS学习笔记37——ViewController生命周期详解

    在我之前的学习笔记中讨论过ViewController,过了这么久,对它也有了新的认识和体会,ViewController是我们在开发过程中碰到最多的朋友,今天就来好好认识一下它.ViewContro ...

  9. 学习笔记——Maven settings.xml 配置详解

    文件存放位置 全局配置: ${M2_HOME}/conf/settings.xml 用户配置: ${user.home}/.m2/settings.xml note:用户配置优先于全局配置.${use ...

随机推荐

  1. mysql多列索引优化

    “把Where条件里面的列都建上索引”,这种说法其实是非常错误的! 这样一个查询,假设actor_id与film_id都单独建立索引 SELECT film_id , actor_id FROM sa ...

  2. laravel composer install 报错解决方法

    composer install 报错信息: 报错原因参考:http://blog.csdn.net/yicixing7/article/details/55050140 解决方法: 把compose ...

  3. Spring Data 介绍 (一)

    简介 Spring Data是什么 Spring Data是一个用于简化数据库访问,并支持云服务的开源框架.其主要目标是使得对数据的访问变得方便快捷 Spring Data JPA能干什么 可以极大的 ...

  4. 02 - nginx - 反向代理、限速

    一.Nginx反向代理 代理服务器,客户机在发送请求时,不会直接发送给目的主机,而是先发送给代理服务器. 代理服务接受客户机请求之后,再向主机发出,并接收目的主机返回的数据,存放在代理服务器的硬盘中, ...

  5. 问题:bower git is not installed or not in the path

    用bower install jquery安装jquery,bower提示错误bower git is not installed or not in the path. 根据错误信息的知道出现错误两 ...

  6. windows上apache是线程处理请求,linux上apache是进程处理请求

    windows上apache是线程处理请求,linux上apache是进程处理请求

  7. 【Python】Pycharm2018激活方式【亲测好用】

    2.激活码激活 优点:Window.Mac.Ubantu都稳定有效,关键是这种激活方式不会产生其他影响 缺点:需要修改hosts文件 修改hosts文件将0.0.0.0 account.jetbrai ...

  8. css实现固定行

    如果实现单行文本的溢出显示省略号同学们应该都知道用text-overflow:ellipsis属性来,当然还需要加宽度width属来兼容部分浏览. 实现方法: overflow: hidden; te ...

  9. java list map用法

    1.初始化,方法1 //初始化List List<string> list = new ArrayList</string><string>(); list.add ...

  10. js将form表单序列化[json字符串、数组、对象]

    1.序列化为字符串 $("#Form").serialize();//name=zhangsan&sex=1&age=20   2.序列化为数组 var formD ...