1. 前言

在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结。

2. LR和SVM的联系

  1. 都是监督的分类算法。
  2. 都是线性分类方法 (不考虑核函数时)。
  3. 都是判别模型

3. LR和SVM的不同

  1. 损失函数的不同,LR是对数损失函数,SVM是hinge损失函数
  2. SVM不能产生概率,LR可以产生概率。
  3. SVM自带结构风险最小化,LR则是经验风险最小化
  4. SVM会用核函数而LR一般不用核函数
  5. LR和SVM在实际应用的区别:根据经验来看,对于小规模数据集,SVM的效果要好于LR,但是大数据中,SVM的计算复杂度受到限制,而LR因为训练简单,可以在线训练,所以经常会被大量采用。

4. 概念解释

  • 判别模型:是直接生成一个表示或者的判别函数(或预测模型),SVM和LR,KNN,决策树都是判别模型。
  • 生成模型:是先计算联合概率分布然后通过贝叶斯公式转化为条件概率,朴素贝叶斯,隐马尔可夫模型是生成模型。
  • 经验风险:对所有训练样本都求一次损失函数,再累加求平均。即,模型\(f(x)\)对训练样本中所有样本的预测能力。
  • 期望风险:对所有样本(包含未知样本和已知的训练样本)的预测能力,是全局概念。(经验风险则是局部概念,仅仅表示决策函数对训练数据集里的样本的预测能力。)
  • 结构风险:对经验风险和期望风险的折中,在经验风险函数后面加一个正则化项(惩罚项),是一个大于0的系数\(\lambda\)。\(J(f)\)表示的是模型的复杂度。

逻辑回归(LR)和支持向量机(SVM)的区别和联系的更多相关文章

  1. 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)

    参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...

  2. 逻辑回归LR

    逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法.这个算法可能不想随机森林.SVM.神经网络.GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看 ...

  3. 机器学习(四)—逻辑回归LR

    逻辑回归常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 推导在笔记上,现在摘取部分要点如下: (0) LR回归是在线性回归模型的基础上,使 ...

  4. 机器学习-逻辑回归与SVM的联系与区别

    (搬运工) 逻辑回归(LR)与SVM的联系与区别 LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类 ...

  5. 感知器、逻辑回归和SVM的求解

    这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器 ...

  6. 逻辑回归 vs 决策树 vs 支持向量机(II)

    原文地址: Logistic Regression vs Decision Trees vs SVM: Part II 在这篇文章,我们将讨论如何在逻辑回归.决策树和SVM之间做出最佳选择.其实 第一 ...

  7. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  8. 机器学习(九)—逻辑回归与SVM区别

    逻辑回归详细推导:http://lib.csdn.net/article/machinelearning/35119 面试常见问题:https://www.cnblogs.com/ModifyRong ...

  9. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

随机推荐

  1. Android--------从一个包中的Avtivity创建另外另外一个包的Context

    Android中有Context的概念,想必大家都知道.Context可以做很多事情,打开activity.发送广播.打开本包下文件夹和数据库.获取classLoader.获取资源等等.如果我们得到了 ...

  2. 【Android】详解Android动画

    目录结构: contents structure [+] 补间动画 使用java代码实现Alpha.Rotate.Scale.Translate动画 通过xml文件实现Alpha.Rotate.Sca ...

  3. 【JQuery】jQuery(document).ready(function($) { });的几种表示方法及load和ready的区别

    jQuery中处理加载时机的几种方式 第一种: jQuery(document).ready(function() { alert("你好"); }); //或 $(documen ...

  4. Springboot使用junit

    1. 首先要下载配套的spring-boot-starter-test包,注意版本要对应. compile("org.springframework.boot:spring-boot-sta ...

  5. Mysql命令行改动字段类型

    在做微信公众平台 知识百科(账号:zhishiwiki) 时,由于字段先前设计的不合理.导致内容装不下,因此须要改动其字段类型为 text 这里使用到了 alter 命令 alter table 表名 ...

  6. 安卓listview滚动时背景变黑的解决方法

    ListView是常用的显示控件,默认背景是和系统窗口一样的透明色,如果给ListView加上背景图片,或者背景颜色时,滚动时listView会黑掉, 原因是,滚动时,列表里面的view重绘时,用的依 ...

  7. Python selenium 滚动条 详解

    在我们使用Python + selenium 爬虫的时候,会遇到如下报错,原因是  当页面上的元素超过一屏后,想操作屏幕下方的元素,是不能直接定位到,会报元素不可见的. selenium.common ...

  8. 批处理向FTP上传指定属性的文件 批处理增量备份的例子

    使用windows批处理向FTP上传具有指定属性的文件,类似增量备份功能. 对一个目录里的几个文件自动上传FTP时只上传有归档属性的文件,然后FTP上传成功后自动清除(本机)刚上传文件的归档属性. 类 ...

  9. [nginx]盗链和防盗链场景模拟实现

    盗链环境模拟 http://www.daolian.com/index.html 这个页面盗用http://www.maotai.com/qq.jpg这个站点页面的图. <!doctype ht ...

  10. js 动画3 完美框架

    js 框架: function getStyle(obj,attr){ if(obj.currentStyle){ return obj.currentStyle[attr]; } else{ ret ...