Nearest Common Ancestors

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
题意:n组数据,y-1条边,最后一个求lca;
博客:http://blog.csdn.net/barry283049/article/details/45842247;我的代码思路根据最后的在线算法得出;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
struct is
{
int u,v;
int next;
}edge[];
int head[];
int deep[];
int rudu[];
int first[];
int dfn[];//存深搜的数组
int dp[][];
int point,jiedge;
int minn(int x,int y)
{
return deep[x]<=deep[y]?x:y;
}
void update(int u,int v)
{
jiedge++;
edge[jiedge].u=u;
edge[jiedge].v=v;
edge[jiedge].next=head[u];
head[u]=jiedge;
}
void dfs(int u,int step)
{
dfn[++point]=u;
deep[point]=step;
if(!first[u])
first[u]=point;
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].v;
dfs(v,step+);
dfn[++point]=u;
deep[point]=step;
}
}
void st(int len)
{
for(int i=;i<=len;i++)
dp[i][]=i;
for(int j=;(<<j)<=len;j++)
for(int i=;i+(<<j)-<=len;i++)
{
dp[i][j]=minn(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
int query(int l,int r)
{
int lll=first[l];
int rr=first[r];
if(lll>rr) swap(lll,rr);
int x=(int)(log((double)(rr-lll+))/log(2.0));
return dfn[minn(dp[lll][x],dp[rr-(<<x)+][x])];
}
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
while(x--)
{
memset(head,,sizeof(head));
memset(rudu,,sizeof(rudu));
memset(first,,sizeof(first));
point=;
jiedge=;
scanf("%d",&y);
for(i=;i<y;i++)
{
int u,v;
scanf("%d%d",&u,&v);
update(u,v);
rudu[v]++;
}
for(i=;i<=y;i++)
if(!rudu[i])
{
dfs(i,);
break;
}
st(point);
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",query(u,v));
}
return ;
}

poj 1330 Nearest Common Ancestors lca 在线rmq的更多相关文章

  1. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  4. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  5. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

随机推荐

  1. 【Cocos2dx 3.3 Lua】剪裁结点ClippingNode

    参考资料:     http://shahdza.blog.51cto.com/2410787/1561937 http://blog.csdn.net/jackystudio/article/det ...

  2. pythonon ddt数据驱动二(json, yaml 驱动)

    这一篇主要是关于文件的数据驱动. 一.通过json文件驱动 @ddt class MyTest(unittest.TestCase): @file_data('test_data_list.json' ...

  3. #C++初学记录(深度搜索#递归)

    深度搜索 走地图的题目是深度搜索里比较容易理解的题目,更深层次的是全排列和七皇后等经典题目,更加难以理解,代码比较抽象. 题目:红与黑 蒜厂有一间长方形的房子,地上铺了红色.黑色两种颜色的正方形瓷砖. ...

  4. mysql设置环境变量

    临时修改环境变量 我们可以使用set语法在运行时修改环境变量,修改global变量后,对修改之前的session没有影响,对修修改之后的session生效:修改session变量后,修改后,对于该se ...

  5. Java设计模式应用——责任链模式

    生产一个产品,需要依次执行多个步骤,才能完成,那么是使用责任链模式则是极好的. 在性能告警模块开发过程中,创建一条告警规则需要执行阈值解析,中间表生成,流任务生成,规则入库,告警事件入库等诸多操作.如 ...

  6. linux常用命令:ping 命令

    Linux系统的ping 命令是常用的网络命令,它通常用来测试与目标主机的连通性,我们经常会说“ping一下某机器,看是不是开着”.不能打开网页时会说“你先ping网关地 址192.168.1.1试试 ...

  7. PHP获取6位数随机数,获取redis里面不存在的6位随机数(设置24小时过时)

    PHP获取6位数随机数 PHP str_shuffle() 函数str_shuffle() 函数随机打乱字符串中的所有字符. 语法 str_shuffle(string) 参数 描述 string必需 ...

  8. C# Http方式下载文件到本地类改进版

    在上文基础上增加了远程文件是否存在和本地文件是否存在的判断. 类代码: using System; using System.Collections.Generic; using System.Lin ...

  9. python之路----线程

    线程概念的引入背景 进程 程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程.程序和进程的区别就在于:程序是指令的集合,它是进程运行的静态描述文本:进程 ...

  10. SQL学习之MYSQL的常用命令和增删改查语句和数据类型

    连接命令:mysql -h[主机地址] -u[用户名] -p[用户密码] 创建数据库:create database [库名] 显示所有数据库: show databases; 打开数据库:use [ ...