Nearest Common Ancestors

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
题意:n组数据,y-1条边,最后一个求lca;
博客:http://blog.csdn.net/barry283049/article/details/45842247;我的代码思路根据最后的在线算法得出;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
struct is
{
int u,v;
int next;
}edge[];
int head[];
int deep[];
int rudu[];
int first[];
int dfn[];//存深搜的数组
int dp[][];
int point,jiedge;
int minn(int x,int y)
{
return deep[x]<=deep[y]?x:y;
}
void update(int u,int v)
{
jiedge++;
edge[jiedge].u=u;
edge[jiedge].v=v;
edge[jiedge].next=head[u];
head[u]=jiedge;
}
void dfs(int u,int step)
{
dfn[++point]=u;
deep[point]=step;
if(!first[u])
first[u]=point;
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].v;
dfs(v,step+);
dfn[++point]=u;
deep[point]=step;
}
}
void st(int len)
{
for(int i=;i<=len;i++)
dp[i][]=i;
for(int j=;(<<j)<=len;j++)
for(int i=;i+(<<j)-<=len;i++)
{
dp[i][j]=minn(dp[i][j-],dp[i+(<<(j-))][j-]);
}
}
int query(int l,int r)
{
int lll=first[l];
int rr=first[r];
if(lll>rr) swap(lll,rr);
int x=(int)(log((double)(rr-lll+))/log(2.0));
return dfn[minn(dp[lll][x],dp[rr-(<<x)+][x])];
}
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
while(x--)
{
memset(head,,sizeof(head));
memset(rudu,,sizeof(rudu));
memset(first,,sizeof(first));
point=;
jiedge=;
scanf("%d",&y);
for(i=;i<y;i++)
{
int u,v;
scanf("%d%d",&u,&v);
update(u,v);
rudu[v]++;
}
for(i=;i<=y;i++)
if(!rudu[i])
{
dfs(i,);
break;
}
st(point);
int u,v;
scanf("%d%d",&u,&v);
printf("%d\n",query(u,v));
}
return ;
}

poj 1330 Nearest Common Ancestors lca 在线rmq的更多相关文章

  1. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  4. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  5. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

随机推荐

  1. 图练习-BFS-从起点到目标点的最短步数(sdut 2830)邻接边表

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2830 题目描述 在古老的魔兽传说中,有两个军团 ...

  2. DataTable转换成IList 【转载】

    链接:http://www.cnblogs.com/hlxs/archive/2011/05/09/2087976.html#2738813 留着学习 using System; using Syst ...

  3. 【剑指Offer学习】【面试题3 :二维数组中的查找】

    package 二维数组查找; public class Test03 { /** * 在一个二维数组中,每一行都按 package 二维数组查找; public class Test03 { /** ...

  4. linux mysql安装问题

    1.rpm -qa | grep mysql   //首先检查是否安装了mysql   2.如果安装了,卸载 rpm -e mysql   3\ 下载地址 http://dev.mysql.com/d ...

  5. JQuery Form AjaxSubmit(options)在Asp.net中的应用注意事项

    所需引用的JS: 在http://www.malsup.com/jquery/form/#download 下载:http://malsup.github.com/jquery.form.js 在ht ...

  6. SV中的线程

    SV中线程之间的通信可以让验证组件之间更好的传递transaction. SV对verilog建模方式的扩展:1) fork.....join 必须等到块内的所有线程都执行结束后,才能继续执行块后的语 ...

  7. zw版【转发·台湾nvp系列Delphi例程】HALCON HistoToThresh2

    zw版[转发·台湾nvp系列Delphi例程]HALCON HistoToThresh2 procedure TForm1.Button1Click(Sender: TObject);var imag ...

  8. hdu4991 树状数组+dp

    这题说的是给了一个序列长度为n 然后求这个序列的严格递增序列长度是m的方案有多少种,如果用dp做那么对于状态有dp[n][m]=dp[10000][100],时间复杂度为n*m*n接受不了那么想想是否 ...

  9. Linux基础命令---unzip

    unzip 解压zip指令压缩过的文件.unzip将列出.测试或从ZIP存档中提取文件,这些文件通常在MS-DOS系统中找到.默认行为(没有选项)是将指定ZIP存档中的所有文件提取到当前目录(及其下面 ...

  10. Ubuntu系统下在github中新增库的方法

    上一篇介绍了Ubuntu16.04系统下安装git的方法.本博客介绍怎么在github上怎么新建库. 如图 root@ranxf:/home/ranxf/learnGit/ranran_jiekou# ...