HDU 4666 最远曼哈顿距离
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4666
关于最远曼哈顿距离的介绍:
http://blog.csdn.net/taozifish/article/details/7574294/
别人的解题报告链接:
http://www.cnblogs.com/kuangbin/archive/2013/08/13/3255752.html
我的解释:
先看一对点,两个点的坐标分别为x(x1,x2,x3,….,xk),y(y1,y2,y3,……,yk).
其曼哈顿距离为d = |x1-y1| + |x2-y2| +…..+|xk-yk|.
在去绝对值后,对于点x,一共有2^k种可能的组合。
所以,在求n个点时,用1表示正号,0表示负号,像状态压缩一样,把所有点的可能都存起来 ,求出每个点在每种状态下的值。如下面三个点的坐标为(2,3),(3,4),(4,5)。它有四种状态,四种状态下对应的值为:
(+,+)5, 7,9
(+,-)-1,-1,-1
(-,+)1,1 ,1
(-,-)-5,-7,-9
最大值为在某种状态下的最大值减去最小值。为什么会是同种状态下呢,看上面曼哈顿距离的计算公式能发现,如果|xi-yi|为正,那么化为xi – yi,x和y对应的分量同号,如果为负,那么化为-xi – (-yi),同样是同号的。式子最终将会化成k1*x1+k2*x2 + ``` + kn*xn – (k1*x1+k2*x2+````+kn*xn)。ki为符号,可正可负。
要想使这个式子最大,自然是某种状态下的最大值减最小值。因为|a-b|>=a-b, |a-b|>=b-a.所以虽然有些符号其实是弄错了的,但是不会影响最大值的得出。
注意:这是我第一次使用multiset,关于删除,multiset有至少两种方法,一种是以键值删除,一种是根据迭代器位置删除···
我一激动。用了第一种,结果一直WA···
还有就是关于全局变量和局部变量,如果既定义了k为全局变量,又在main函数中定义了k为局部变量,那么k就是一个局部变量了,编译器对于这种错误是不会报错的····
其实,我不是很理解这个算法,我是抄的····
还有set<int>se.插入后是已经排好序了的,如果想调用其中的最大值,那么应该写
multiset<int>::iterator it;
it = se.end();
--it;
int t2 = (*it);
最小值应该为int t1 = *se.begin();
贴代码:
#include <cstdio>
#include <set>
#define N 60010
using namespace std;
int x[N][];
int d,k;
multiset<int> ms[];
void solve(int a[],int flag)
{
for(int i=; i<d ; ++i)
{
int s=;
for(int j=; j<k; ++j)
{
if(i&(<<j)) s += a[j];
else s -= a[j];
}
if(flag) ms[i].insert(s);
else
{
multiset<int>::iterator it = ms[i].find(s);
ms[i].erase(it);
}
}
}
int main()
{
// freopen("in.c","r",stdin);
int q;
while(~scanf("%d%d",&q,&k))
{
d = <<k;
for(int i=; i<d; ++i) ms[i].clear();
for(int i=; i<=q; ++i)
{
int od;
scanf("%d",&od);
if(od == )
{
for(int j=; j<k; ++j)
scanf("%d",&x[i][j]);
solve(x[i],true);
}
else
{
int p;
scanf("%d",&p);
solve(x[p],false);
}
int ans =;
for(int j=; j<d; ++j)
{
int t1 = *(ms[j].begin());
multiset<int>::iterator it;
it = ms[j].end();
--it;
int t2 = (*it);
if(t2-t1 > ans) ans= t2-t1;
}
printf("%d\n",ans);
}
}
return ;
}
HDU 4666 最远曼哈顿距离的更多相关文章
- hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)
Hyperspace Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- [HDU 4666]Hyperspace[最远曼哈顿距离][STL]
题意: 许多 k 维点, 求这些点之间的最远曼哈顿距离. 并且有 q 次操作, 插入一个点或者删除一个点. 每次操作之后均输出结果. 思路: 用"疑似绝对值"的思想, 维护每种状态 ...
- HDU 4666 Hyperspace (最远曼哈顿距离)
Hyperspace Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- HDU 4666 Hyperspace (2013多校7 1001题 最远曼哈顿距离)
Hyperspace Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- 2018 Multi-University Training Contest 10 CSGO(HDU - 6435)(最远曼哈顿距离)
有 n 种主武器,m 种副武器.每种武器有一个基础分数k种属性值 X[i] . 选出一种主武器 mw 和一种副武器 sw,使得两种武器的分数和 + 每个属性的差值尽量大.(参考下面的式子) 多维的最远 ...
- poj 2926:Requirements(最远曼哈顿距离,入门题)
Requirements Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3908 Accepted: 1318 Desc ...
- POJ-2926 Requirements 最远曼哈顿距离
题目链接:http://poj.org/problem?id=2926 题意:求5维空间的点集中的最远曼哈顿距离.. 降维处理,推荐2009武森<浅谈信息学竞赛中的“0”和“1”>以及&l ...
- Codeforces 491B. New York Hotel 最远曼哈顿距离
最远曼哈顿距离有两个性质: 1: 对每一个点(x,y) 分别计算 +x+y , -x+y , x-y , -x-y 然后统计每种组合的最大值就能够了, 不会对结果产生影响 2: 去掉绝对值 , 设 ...
- hdu 4666 Hyperspace(多维度最远曼哈顿距离)
献上博文一篇http://hi.baidu.com/byplane747/item/53ca46c159e654bc0d0a7b8d 设维度为k,维护(1<<k)个优先队列,用来保存0~( ...
随机推荐
- jsp动作之 getProperty
getProperty就是用来获取(读取)实例化的内容的. 说明了就是(Techerobj实例为样,用name=张三,age=21等属性) <%=Techerobj.getName()%> ...
- golang martini 源码阅读笔记之martini核心
继上一篇关于inject注入的笔记,理解了martini的关键核心之一:依赖注入.注入回调函数,由运行时进行主动调用执行.这一篇主要是注解martini的骨架martini.go的实现,下面先从一个简 ...
- android--------Android Studio常见问题以及解决方式
gradle build的时候出现的问题: Error:Execution failed for task ':app:packageDebug'. Duplicate files copied in ...
- Asp.Net中的sessionState设置
在web.config中有sessionState的节点配置,sessionState共有4中模式:off,inProc,StateServer,SqlServer. 1. off模式 关闭模式,如果 ...
- HDOJ1004
#include<iostream> #include "cstring" using namespace std; int add(char s1[],char s2 ...
- Animation同时改变多个属性的动画
<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head> < ...
- vs2015 企业版、专业版如何破解(秘钥)
安装完vs2015 企业版后,在菜单帮助---注册产品,显示产品试用期30天,怎么破解呢? 一.破解秘钥 企业版 HM6NR-QXX7C-DFW2Y-8B82K-WTYJV 专业版 HMG ...
- scrapy-redis基础和介绍
一.scrapy-redis(0.6)依赖的环境 Scrapy >= 1.0.0 #终于过了1版本,这个太重要了,总算坑小了点,感谢那些为了解决各种scrapy与s ...
- String对象中的正则表达式
(1)身份证号码验证身份证号码是18位数字,根据GB11643-1999<公民身份证>定义制作:由17位本体码和一位校验码组成.身份证号码前6位是地址码,按(GB/T2260)规定执行.接 ...
- EHlib在数据单元中显示字段值为图形。
-[定制网格数据单元] 在数据单元中显示字段值为图形. TDBGridEh allows to show bitmaps from TImageList component depending o ...