HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.
Input
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
Output
If the original graph is strongly connected, just output -1.
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
Sample Output
Case 1: -1
Case 2: 1
Case 3: 15
Source
#include <bits/stdc++.h>
using namespace std;
const int N=+;
int dfn[N],low[N],team[N],num[N],in[N],out[N];
bool instack[N];
int n,T,m,index,team_num;
vector<int> mp[N];
stack<int> S;
void Tarjan(int u)
{
low[u]=dfn[u]=++index;
S.push(u);
instack[u]=;
for(int i=;i<mp[u].size();i++)
{
int v=mp[u][i];
if (!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (instack[v]) low[u]=min(low[u],dfn[v]);
}
if (dfn[u]==low[u])
{
team_num++;
while()
{
int v=S.top(); S.pop();
instack[v]=;
team[v]=team_num; // v点是第几组
num[team_num]++; //第i组的点个数
if (v==u) break;
}
}
}
void dfs()
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
memset(team,,sizeof(team));
memset(num,,sizeof(num));
team_num=;
index=;
for(int i=;i<=n;i++)
if (!dfn[i]) Tarjan(i);
}
int main()
{
scanf("%d",&T);
for(int cas=;cas<=T;cas++)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) mp[i].clear();
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
mp[x].push_back(y);
}
dfs(); //缩点,求出各个组的点数
printf("Case %d: ",cas);
for(int i=;i<=team_num;i++) in[i]=out[i]=;
for(int i=;i<=n;i++)
for(int j=;j<mp[i].size();j++)
{
if (team[i]!=team[mp[i][j]])
{
in[team[mp[i][j]]]++;
out[team[i]]++;
}
}
//统计入度数和出度数
int minn=;
for(int i=;i<=team_num;i++)
if (in[i]== || out[i]==) minn=min(minn,num[i]);
//求出入度=0或者出度=0的点数最小的组
if (team_num==) printf("-1\n");
else printf("%lld\n",(long long)n*n-n-(long long)minn*(n-minn)-m);
}
return ;
}
HDU 4635 Strongly connected (Tarjan+一点数学分析)的更多相关文章
- hdu 4635 Strongly connected(Tarjan)
做完后,看了解题报告,思路是一样的.我就直接粘过来吧 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部 ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected(强连通)经典
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4635 Strongly connected (tarjan)
题意:给一个n个顶点m条弧的简单有向图(无环无重边),求最多能够加入多少条弧使得加入后的有向图仍为简单有向图且不是一个强连通图.假设给的简单有向图本来就是强连通图,那么输出-1. 分析: 1.用tar ...
- hdu 4635 Strongly connected
http://acm.hdu.edu.cn/showproblem.php?pid=4635 我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值 表示是由多少个点 ...
- HDU 4635 Strongly connected ——(强连通分量)
好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设 ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
随机推荐
- Python3基础 str while+iter+next 字符串的遍历
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- DD-WRT自定义脚本更新花生壳DDNS
N年以前买了一个tp-link 841n v7,一直用的还算可以吧,除了不定期重启路由器,不然网速慢的龟爬啊!这也是TP原厂固件的通病,于是刷了DD-WRT,话说DD确实很爽,除了功能强大之外,而且很 ...
- 论文笔记之:Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification ICCV 2013
Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification ICCV 2013 在基于Gr ...
- js中的&&和||
你是否看到过这样的代码:a=a||""; 可能javascript初学者会对此感到茫然.今天就跟大家分享一下我的一些心得. 其实: a=a||"defaultValue& ...
- Python matplot画柱状图(一)
图的存在,让数据变得形象化.无论多么复杂的东西,都是简单的组合. import matplotlib.pyplot as plt import numpy as np dict = {'A': 40, ...
- Springboot mybatis generate 自动生成实体类和Mapper
https://github.com/JasmineQian/SpringDemo_2019/tree/master/mybatis Springboot让java开发变得方便,Springboot中 ...
- [ios]ios语音识别
参考:http://blog.sina.com.cn/s/blog_923fdd9b0101flx1.html 通过谷歌语音接口的实现语音识别 最近在项目中有需要实现语音识别的功能.折腾了几天才搞好. ...
- 团队作业Beta冲刺-第三天
2018.06.26 各个成员完成任务 成员 今日完成任务 贡献小时数 龙正圆 后台程序完善 5h 杨环宇 后台程序完善 4h 马军.龚继恒 界面美化 2h 候燕.纪亚星 Beta冲刺博客的撰写 3h ...
- 《剑指offer》第四十题(最小的k个数)
// 面试题40:最小的k个数 // 题目:输入n个整数,找出其中最小的k个数.例如输入4.5.1.6.2.7.3.8 // 这8个数字,则最小的4个数字是1.2.3.4. #include < ...
- Codeforces 798A - Mike and palindrome
A. Mike and palindrome time limit per test 2 seconds memory limit per test 256 megabytes input stand ...