HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.
Input
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
Output
If the original graph is strongly connected, just output -1.
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
Sample Output
Case 1: -1
Case 2: 1
Case 3: 15
Source
#include <bits/stdc++.h>
using namespace std;
const int N=+;
int dfn[N],low[N],team[N],num[N],in[N],out[N];
bool instack[N];
int n,T,m,index,team_num;
vector<int> mp[N];
stack<int> S;
void Tarjan(int u)
{
low[u]=dfn[u]=++index;
S.push(u);
instack[u]=;
for(int i=;i<mp[u].size();i++)
{
int v=mp[u][i];
if (!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (instack[v]) low[u]=min(low[u],dfn[v]);
}
if (dfn[u]==low[u])
{
team_num++;
while()
{
int v=S.top(); S.pop();
instack[v]=;
team[v]=team_num; // v点是第几组
num[team_num]++; //第i组的点个数
if (v==u) break;
}
}
}
void dfs()
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
memset(team,,sizeof(team));
memset(num,,sizeof(num));
team_num=;
index=;
for(int i=;i<=n;i++)
if (!dfn[i]) Tarjan(i);
}
int main()
{
scanf("%d",&T);
for(int cas=;cas<=T;cas++)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) mp[i].clear();
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
mp[x].push_back(y);
}
dfs(); //缩点,求出各个组的点数
printf("Case %d: ",cas);
for(int i=;i<=team_num;i++) in[i]=out[i]=;
for(int i=;i<=n;i++)
for(int j=;j<mp[i].size();j++)
{
if (team[i]!=team[mp[i][j]])
{
in[team[mp[i][j]]]++;
out[team[i]]++;
}
}
//统计入度数和出度数
int minn=;
for(int i=;i<=team_num;i++)
if (in[i]== || out[i]==) minn=min(minn,num[i]);
//求出入度=0或者出度=0的点数最小的组
if (team_num==) printf("-1\n");
else printf("%lld\n",(long long)n*n-n-(long long)minn*(n-minn)-m);
}
return ;
}
HDU 4635 Strongly connected (Tarjan+一点数学分析)的更多相关文章
- hdu 4635 Strongly connected(Tarjan)
做完后,看了解题报告,思路是一样的.我就直接粘过来吧 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部 ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected(强连通)经典
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4635 Strongly connected (tarjan)
题意:给一个n个顶点m条弧的简单有向图(无环无重边),求最多能够加入多少条弧使得加入后的有向图仍为简单有向图且不是一个强连通图.假设给的简单有向图本来就是强连通图,那么输出-1. 分析: 1.用tar ...
- hdu 4635 Strongly connected
http://acm.hdu.edu.cn/showproblem.php?pid=4635 我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值 表示是由多少个点 ...
- HDU 4635 Strongly connected ——(强连通分量)
好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设 ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
随机推荐
- Go第六篇之结构体剖析
Go 语言通过用自定义的方式形成新的类型,结构体是类型中带有成员的复合类型.Go 语言使用结构体和结构体成员来描述真实世界的实体和实体对应的各种属性. Go 语言中的类型可以被实例化,使用new或&a ...
- linux下设置软件使用socks5代理
1.为wget使用代理,可以直接修改/etc/wgetrc,也可以在主文件夹下新建.wgetrc,并编辑相应内容,本文采用后者. 直接往~/.wgetrc(自行创建此文件)添加如下内容: https_ ...
- Jedis和JAVA对象的序列化和反序列化的使用
1. Jedis版本: jedis-2.6.2.jar 背景:现在系统提供portal接口服务,使用JDBC直接查询数据库,使用jedis提供的缓存功能,在JDBC前面加上Redis,先从Redis中 ...
- 【TCP/IP详解 卷一:协议】第十九章 TCP的交互数据流
19.1 引言 前一章我们介绍了TCP连接的建立与释放:三握四挥,以及状态转移图. TCP报文段分为:交互数据,以及成块数据(下一章介绍). 交互数据:例如telnet,ssh,这种类型的协议在大多数 ...
- .NET Core2.0应用IdentityServer4
IdentityServer4能解决什么问题 假设我们开发了一套[微博程序],主要拥有两个功能:[登陆验证].[数据获取] 随后我们又开发了[简书程序].[知乎程序],它们的主要功能也是:[登陆验证] ...
- 洛谷P2777 [AHOI2016初中组]自行车比赛
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- WiscKey: Separating Keys from Values in SSD-Conscious Storage [读后整理]
WiscKey: Separating Keys from Values in SSD-Conscious Storage WiscKey是一个基于LSM的KV存储引擎,特点是:针对SSD的顺序和随机 ...
- python ros 关闭节点
def myhook(): print "shutdown time!" rospy.on_shutdown(myhook) 或 rospy.signal_shutdown(rea ...
- python 多线程队列
##Using Queue with multiprocessing – Chapter : Process Based Parallelism import multiprocessing impo ...
- 解决Resource doesn't have a corresponding Go package.问题
首先上图 这个报错主要是程序要启动没有入口的原因,package main下边的mian方法才是一个程序的入口.这就要 修改目录结构如下图修改并运行就可以了