LeetCode 64 Minimum Path Sum
Problem:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Summary:
想要从m*n的整型数矩阵左上角走到右下角,每次只可以向右或向下移动一步,求路径上的整型数最小情况下的数字之和。
Solution:
1. 暴力法:枚举从左上角到右下角的所有路径,分别计算出路径和并比较。但效率过低且明显不可行,故不考虑。
2. 动态规划:由于只可以向右或向下移动,若已知(i, j)位置上一格(i - 1, j)以及左一格(i, j - 1)的路径数字之和,即可确定该位置的路径数字和:
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1])
初始化:dp[0][0] = grid[0][0]
dp[0][j] = dp[0][j - 1] + grid[0][j]
dp[i][0] = dp[i - 1][0] + grid[i][0]
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row = grid.size(), col = grid[].size();
vector<vector<int>> dp(row, vector<int>(col));
for (int i = ; i < row; i++) {
for (int j = ; j < col; j++) {
if (!i && !j) {
dp[i][j] = grid[i][j];
}
else if (!i && j) {
dp[i][j] = dp[i][j - ] + grid[i][j];
}
else if (i && !j) {
dp[i][j] = dp[i - ][j] + grid[i][j];
}
else {
dp[i][j] = min(dp[i - ][j], dp[i][j - ]) + grid[i][j];
}
}
}
return dp[row - ][col - ];
}
};
3. 在法2的基础上优化空间
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row = grid.size(), col = grid[].size();
vector<int> dp(col);
dp[] = grid[][];
for (int i = ; i < row; i++) {
for (int j = ; j < col; j++) {
if (!i && !j) {
dp[j] = grid[i][j];
}
else if (!i && j) {
dp[j] = dp[j - ] + grid[i][j];
}
else if (i && !j) {
dp[j] += grid[i][j];
}
else {
dp[j] = min(dp[j], dp[j - ]) + grid[i][j];
}
}
}
return dp[col - ];
}
};
LeetCode 64 Minimum Path Sum的更多相关文章
- [LeetCode] 64. Minimum Path Sum 最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- LeetCode 64. Minimum Path Sum(最小和的路径)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- C#解leetcode 64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [leetcode]64. Minimum Path Sum最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- leetCode 64.Minimum Path Sum (最短路) 解题思路和方法
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [leetcode] 64. Minimum Path Sum (medium)
原题 简单动态规划 重点是:grid[i][j] += min(grid[i][j - 1], grid[i - 1][j]); class Solution { public: int minPat ...
- leecode 每日解题思路 64 Minimum Path Sum
题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...
- 刷题64. Minimum Path Sum
一.题目说明 题目64. Minimum Path Sum,给一个m*n矩阵,每个元素的值非负,计算从左上角到右下角的最小路径和.难度是Medium! 二.我的解答 乍一看,这个是计算最短路径的,迪杰 ...
- 【LeetCode】64. Minimum Path Sum
Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...
随机推荐
- UltralEdit 替换tips
UltralEdit的字符串替换,简直是编辑器的神来之笔! 可以通过 搜索--〉替换 菜单调出,也可以使用 Ctrl+R 快捷键 下面来看字符的表示吧: tab可以直接Tab键(可能不成功,因为被用作 ...
- Office2016打开doc字符间距过小
缺少字体.........装上就行,放到windows/fonts目录下,自动安装了
- [信安presentation]Fight against GFW
Section1:加密 加密算法分为:对称加密算法.非对称加密算法.Hash 1.1对称加密算法 加密解密使用相同的密钥 eg:DES,AES,RC4,RC5,Triple DES 缺点:1.因为加密 ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
- broadcasting Theano vs. Numpy
broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...
- 让 FreeBSD 和 Gentoo Linux 在 ZFS 存储卷上共存
自我回归到 Librem 15 已经有段时间了.我一般会选择 FreeBSD 来处理所有的事情,但有时会要访问一个运行在 Librem 平台上的 Linux OS,以便用它来帮助我对一些遗留的设备驱动 ...
- dos命令
一 .常用命令 1 dir无参数:查看当前所在目录的文件和文件夹./s:查看当前目录已经其所有子目录的文件和文件夹./a:查看包括隐含文件的所有文件./ah:只显示出隐含文件./w:以紧凑方式(一行显 ...
- Redis连接
using System; using System.Configuration; using StackExchange.Redis; namespace Redis { public sealed ...
- JavaWeb学习笔记——过滤器
JSP可以完成的功能Servlet都可以完成,但是Servlet具备的很多功能是JSP所不具备的. 从使用上来看,Servlet可以分成简单Servlet.过滤Servlet(过滤器)和监听Servl ...
- 【先定一个小目标】怎么解决mysql不允许远程连接的错误
最近使用Navicat for MySQl访问远程mysql数据库,出现报错,显示“1130 - Host'xxx.xxx.xxx.xxx' is not allowed to connect to ...