Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

思路I:动态规划,遍历到i的时候要保证之前的元素都已经计算过状态,所以遍历顺序同插入排序,时间复杂度O(n2)

class Solution {
public:
string longestPalindrome(string s) {
int len = s.length();
if(len==) return s; bool dp[len][len]={false};
int maxLen=;
int start=; //initialize
for(int i = ; i < len; i++){
dp[i][i]=true;
} for(int i=; i<len; i++){
for(int j = ; j<i; j++){
if(s[i]==s[j] && (j==i- || dp[j+][i-])){
dp[j][i]=true;
if(i-j+ > maxLen){
maxLen=i-j+;
start=j;
}
}
}
} return s.substr(start, maxLen);
}
};

思路II:KMP,一种字符串匹配方法。

首先在字符串的每个字符间加上#号。For example: S = “abaaba”, T = “#a#b#a#a#b#a#”。这样所有的回文数都是奇数,以便通过i的对应位置i’获得p[i]
P[i]存储以i为中心的最长回文的长度。For example: 
T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0
下面我们说明如何计算P[i]。
假设我们已经处理了C位置(中心位置),它的最长回文数是abcbabcba,L指向它左侧位置,R指向它右侧位置。
现在我们要处理i位置。
p[i]必定>=p[i'],那是因为在L到R范围内,i'的左侧与i的右侧相同,i'的右侧与i的左侧相同,i'左侧与右侧相同 =>i左侧与右侧相同。具体地,
if P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ]
else P[ i ] ≥ P[ i' ]. (Which we have to expand past the right edge (R) to find P[ i ].
If the palindrome centered at i does expand past R, we update C to i, (the center of this new palindrome), and extend R to the new palindrome’s right edge.
 
时间复杂度分析:
In each step, there are two possibilities. 
  • If P[ i ] ≤ R – i, we set P[ i ] to P[ i' ] which takes exactly one step.
  • Otherwise we attempt to change the palindrome’s center to i by expanding it starting at the right edge, R. Extending R (the inner while loop) takes at most a total of N steps, and positioning and testing each centers take a total of N steps too. Therefore, this algorithm guarantees to finish in at most 2*N steps, giving a linear time solution.

那么总共时间复杂度最坏是O(n2),最好是O(n)

class Solution {
public:
string preProcess(string s) {
int n = s.length();
if (n == ) return "^$";
string ret = "^"; //开始符^
for (int i = ; i < n; i++)
ret += "#" + s.substr(i, ); ret += "#$"; //结束符$
return ret;
} string longestPalindrome(string s) {
string T = preProcess(s);
int n = T.length();
int *P = new int[n]; //状态数组长度等于原来字符串的长度,不用给#计算状态
int C = , R = ;
for (int i = ; i < n-; i++) {
int i_mirror = *C-i; // equals to i_mirror = C - (i-C) //if p[i_mirror] < R-i: set p[i] to p[i_mirror]
P[i] = (R > i) ? min(R-i, P[i_mirror]) : ; //else: Attempt to expand palindrome centered at i
while (T[i + + P[i]] == T[i - - P[i]]) //因为有哨兵^$所以不用担心越界; +1, -1检查下一个元素是否相等,若相等,扩大p[i]
P[i]++; //if the palindrome centered at i does expand past R
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
} // Find the maximum element in P.
int maxLen = ;
int centerIndex = ;
for (int i = ; i < n-; i++) {
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
}
delete[] P; return s.substr((centerIndex - - maxLen)/, maxLen);
}
};

5.Longest Palindromic Substring (String; DP, KMP)的更多相关文章

  1. 5. Longest Palindromic Substring (DP)

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  2. Leetcode:【DP】Longest Palindromic Substring 解题报告

    Longest Palindromic Substring -- HARD 级别 Question SolutionGiven a string S, find the longest palindr ...

  3. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  4. *5. Longest Palindromic Substring (dp) previous blogs are helpful

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  5. LeetCode第[5]题(Java):Longest Palindromic Substring 标签:String、动态规划

    题目中文:求最长回文子串 题目难度:Medium 题目内容: Given a string s, find the longest palindromic substring in s. You ma ...

  6. 【LeetCode】Longest Palindromic Substring 解题报告

    DP.KMP什么的都太高大上了.自己想了个朴素的遍历方法. [题目] Given a string S, find the longest palindromic substring in S. Yo ...

  7. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  8. Leetcode Longest Palindromic Substring

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  9. 【leedcode】 Longest Palindromic Substring

    Given a , and there exists one unique longest palindromic substring. https://leetcode.com/problems/l ...

随机推荐

  1. [C#]反射遍历对象属性

    /// <summary> /// C#反射遍历对象属性 /// </summary> /// <typeparam name="T">对象类型 ...

  2. java发送http请求,内容为xml格式&&传统URI类请求

    import java.io.BufferedInputStream; import java.io.BufferedReader; import java.io.ByteArrayOutputStr ...

  3. Android RILD运行机制详解

    前言 在上一篇文章里(http://blog.csdn.net/jason_wzn/article/details/53232022),简要介绍了Android RIL的架构.这一篇文章,就来看一看R ...

  4. OpenGL chapter4 基础变换

    math3d库有两个数据类型,能够表示一个三维或四维向量: M3DVector3f M3DVector4f 4.3 理解投影 正投影 : 正交变换 透视投影 : 透视变换 表4.1 OpenGL变换术 ...

  5. sqoop操作之Oracle导入到HDFS

    导入表的所有字段 sqoop import --connect jdbc:oracle:thin:@192.168.1.100:1521:ORCL \ --username SCOTT --passw ...

  6. SSH 在ssh-copy-id 之后仍需输入密码的问题

    最近在使用Ansible,基于SSH. 远程服务器IP: 192.168.200.193 以下提及的远程服务器都为该服务器. 远程用户: ansible_user 在本地服务器中,ssh-keygen ...

  7. a标签解析url

    var url = 'http://127.0.0.1:8080/index.jsp?username=admin#name'; var aLink = document.createElement( ...

  8. 20180130之PYTHON学习笔记【PYTHON3写个自动听课功能】

    -----------------------原始实现想法------------ import pyautoguifrom PIL import Image#img=Image.open('c:/p ...

  9. Trace VM

    24小时稳定性压测Trace 高并发情况下主要观察VM运行情况 一.总体概览 如上图所示 持久代十分稳定,没有发生OOM 二.VM区域详情 上图为VM每个区间的具体情况 1.持久代始终占分配空间的四分 ...

  10. ajax 实现跨域

    ajax本身是不可以跨域的,通过产生一个script标签来实现跨域.因为script标签的src属性是没有跨域的限制的. 其实设置了dataType: 'jsonp'后,$.ajax方法就和ajax ...