Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

思路I:动态规划,遍历到i的时候要保证之前的元素都已经计算过状态,所以遍历顺序同插入排序,时间复杂度O(n2)

class Solution {
public:
string longestPalindrome(string s) {
int len = s.length();
if(len==) return s; bool dp[len][len]={false};
int maxLen=;
int start=; //initialize
for(int i = ; i < len; i++){
dp[i][i]=true;
} for(int i=; i<len; i++){
for(int j = ; j<i; j++){
if(s[i]==s[j] && (j==i- || dp[j+][i-])){
dp[j][i]=true;
if(i-j+ > maxLen){
maxLen=i-j+;
start=j;
}
}
}
} return s.substr(start, maxLen);
}
};

思路II:KMP,一种字符串匹配方法。

首先在字符串的每个字符间加上#号。For example: S = “abaaba”, T = “#a#b#a#a#b#a#”。这样所有的回文数都是奇数,以便通过i的对应位置i’获得p[i]
P[i]存储以i为中心的最长回文的长度。For example: 
T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0
下面我们说明如何计算P[i]。
假设我们已经处理了C位置(中心位置),它的最长回文数是abcbabcba,L指向它左侧位置,R指向它右侧位置。
现在我们要处理i位置。
p[i]必定>=p[i'],那是因为在L到R范围内,i'的左侧与i的右侧相同,i'的右侧与i的左侧相同,i'左侧与右侧相同 =>i左侧与右侧相同。具体地,
if P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ]
else P[ i ] ≥ P[ i' ]. (Which we have to expand past the right edge (R) to find P[ i ].
If the palindrome centered at i does expand past R, we update C to i, (the center of this new palindrome), and extend R to the new palindrome’s right edge.
 
时间复杂度分析:
In each step, there are two possibilities. 
  • If P[ i ] ≤ R – i, we set P[ i ] to P[ i' ] which takes exactly one step.
  • Otherwise we attempt to change the palindrome’s center to i by expanding it starting at the right edge, R. Extending R (the inner while loop) takes at most a total of N steps, and positioning and testing each centers take a total of N steps too. Therefore, this algorithm guarantees to finish in at most 2*N steps, giving a linear time solution.

那么总共时间复杂度最坏是O(n2),最好是O(n)

class Solution {
public:
string preProcess(string s) {
int n = s.length();
if (n == ) return "^$";
string ret = "^"; //开始符^
for (int i = ; i < n; i++)
ret += "#" + s.substr(i, ); ret += "#$"; //结束符$
return ret;
} string longestPalindrome(string s) {
string T = preProcess(s);
int n = T.length();
int *P = new int[n]; //状态数组长度等于原来字符串的长度,不用给#计算状态
int C = , R = ;
for (int i = ; i < n-; i++) {
int i_mirror = *C-i; // equals to i_mirror = C - (i-C) //if p[i_mirror] < R-i: set p[i] to p[i_mirror]
P[i] = (R > i) ? min(R-i, P[i_mirror]) : ; //else: Attempt to expand palindrome centered at i
while (T[i + + P[i]] == T[i - - P[i]]) //因为有哨兵^$所以不用担心越界; +1, -1检查下一个元素是否相等,若相等,扩大p[i]
P[i]++; //if the palindrome centered at i does expand past R
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
} // Find the maximum element in P.
int maxLen = ;
int centerIndex = ;
for (int i = ; i < n-; i++) {
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
}
delete[] P; return s.substr((centerIndex - - maxLen)/, maxLen);
}
};

5.Longest Palindromic Substring (String; DP, KMP)的更多相关文章

  1. 5. Longest Palindromic Substring (DP)

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  2. Leetcode:【DP】Longest Palindromic Substring 解题报告

    Longest Palindromic Substring -- HARD 级别 Question SolutionGiven a string S, find the longest palindr ...

  3. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  4. *5. Longest Palindromic Substring (dp) previous blogs are helpful

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  5. LeetCode第[5]题(Java):Longest Palindromic Substring 标签:String、动态规划

    题目中文:求最长回文子串 题目难度:Medium 题目内容: Given a string s, find the longest palindromic substring in s. You ma ...

  6. 【LeetCode】Longest Palindromic Substring 解题报告

    DP.KMP什么的都太高大上了.自己想了个朴素的遍历方法. [题目] Given a string S, find the longest palindromic substring in S. Yo ...

  7. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  8. Leetcode Longest Palindromic Substring

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  9. 【leedcode】 Longest Palindromic Substring

    Given a , and there exists one unique longest palindromic substring. https://leetcode.com/problems/l ...

随机推荐

  1. Response、Request、QueryString,修改,Cookies

    Response对象:响应请求Response.Write("<script>alert('添加成功!')</script>");Response.Redi ...

  2. Unity3D 中判断点与多边形的关系

    由点发出的射线与多边形边的交点个数,如果是偶数个说明在多边形的外面,交点个数为奇数个在多边形的内部,下面是代码: public bool IsPointInPolygon(Vector2 point, ...

  3. [转]C# 使用代理访问网络

    本文部分内容来自:https://zhidao.baidu.com/question/563196409.html 也可以参考:http://www.cnblogs.com/stuart/p/5442 ...

  4. 利用.pbk来实现ADSL开机自动拨号

    当你新建拨号连接或者VPN连接之后在你的电脑里会创建一个.pbk的文件 这个.pbk的文件可以说是一个集合,将你电脑的所有连接都保存在一起. 同时你还可以将此连接复制起来传给其他人. 系统默认的.pb ...

  5. 【基础知识六】支持向量机SVM

    开发库: libsvm, liblinear      GitHub地址 SVM难点:核函数选择 一.基本问题 找到约束参数ω和b,支持向量到(分隔)超平面的距离最大:此时的分隔超平面称为“最优超平面 ...

  6. python的类

    一.语法 python类的机制是 C++ 的类机制和 Modula-3 的类机制的混合体: 允许多继承的类继承机制,派生类可以重写它父类的任何方法,一个方法可以调用父类中重名的方法: 1.动态特性:  ...

  7. Spark 编程模型(中)

    先在IDEA新建一个maven项目 我这里用的是jdk1.8,选择相应的骨架 这里选择本地在window下安装的maven 新的项目创建成功 我的开始pom.xml文件配置 <project x ...

  8. mysql更新(四) 数据类型

    07-数据类型   介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 详细参考链接:http://www.runoob.com/mysql/m ...

  9. 使用Apache POI处理excel公式不更新的解决办法

    使用poi更新excel时,如果单元格A设置了公式,当其依赖的其他单元格填充了值之后,导出的excel中A仍为公式而不是自动计算的值,如图: Paste_Image.png 分值小计没有更新成计算结果 ...

  10. jackson的小知识