Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

思路I:动态规划,遍历到i的时候要保证之前的元素都已经计算过状态,所以遍历顺序同插入排序,时间复杂度O(n2)

class Solution {
public:
string longestPalindrome(string s) {
int len = s.length();
if(len==) return s; bool dp[len][len]={false};
int maxLen=;
int start=; //initialize
for(int i = ; i < len; i++){
dp[i][i]=true;
} for(int i=; i<len; i++){
for(int j = ; j<i; j++){
if(s[i]==s[j] && (j==i- || dp[j+][i-])){
dp[j][i]=true;
if(i-j+ > maxLen){
maxLen=i-j+;
start=j;
}
}
}
} return s.substr(start, maxLen);
}
};

思路II:KMP,一种字符串匹配方法。

首先在字符串的每个字符间加上#号。For example: S = “abaaba”, T = “#a#b#a#a#b#a#”。这样所有的回文数都是奇数,以便通过i的对应位置i’获得p[i]
P[i]存储以i为中心的最长回文的长度。For example: 
T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0
下面我们说明如何计算P[i]。
假设我们已经处理了C位置(中心位置),它的最长回文数是abcbabcba,L指向它左侧位置,R指向它右侧位置。
现在我们要处理i位置。
p[i]必定>=p[i'],那是因为在L到R范围内,i'的左侧与i的右侧相同,i'的右侧与i的左侧相同,i'左侧与右侧相同 =>i左侧与右侧相同。具体地,
if P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ]
else P[ i ] ≥ P[ i' ]. (Which we have to expand past the right edge (R) to find P[ i ].
If the palindrome centered at i does expand past R, we update C to i, (the center of this new palindrome), and extend R to the new palindrome’s right edge.
 
时间复杂度分析:
In each step, there are two possibilities. 
  • If P[ i ] ≤ R – i, we set P[ i ] to P[ i' ] which takes exactly one step.
  • Otherwise we attempt to change the palindrome’s center to i by expanding it starting at the right edge, R. Extending R (the inner while loop) takes at most a total of N steps, and positioning and testing each centers take a total of N steps too. Therefore, this algorithm guarantees to finish in at most 2*N steps, giving a linear time solution.

那么总共时间复杂度最坏是O(n2),最好是O(n)

class Solution {
public:
string preProcess(string s) {
int n = s.length();
if (n == ) return "^$";
string ret = "^"; //开始符^
for (int i = ; i < n; i++)
ret += "#" + s.substr(i, ); ret += "#$"; //结束符$
return ret;
} string longestPalindrome(string s) {
string T = preProcess(s);
int n = T.length();
int *P = new int[n]; //状态数组长度等于原来字符串的长度,不用给#计算状态
int C = , R = ;
for (int i = ; i < n-; i++) {
int i_mirror = *C-i; // equals to i_mirror = C - (i-C) //if p[i_mirror] < R-i: set p[i] to p[i_mirror]
P[i] = (R > i) ? min(R-i, P[i_mirror]) : ; //else: Attempt to expand palindrome centered at i
while (T[i + + P[i]] == T[i - - P[i]]) //因为有哨兵^$所以不用担心越界; +1, -1检查下一个元素是否相等,若相等,扩大p[i]
P[i]++; //if the palindrome centered at i does expand past R
if (i + P[i] > R) {
C = i;
R = i + P[i];
}
} // Find the maximum element in P.
int maxLen = ;
int centerIndex = ;
for (int i = ; i < n-; i++) {
if (P[i] > maxLen) {
maxLen = P[i];
centerIndex = i;
}
}
delete[] P; return s.substr((centerIndex - - maxLen)/, maxLen);
}
};

5.Longest Palindromic Substring (String; DP, KMP)的更多相关文章

  1. 5. Longest Palindromic Substring (DP)

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  2. Leetcode:【DP】Longest Palindromic Substring 解题报告

    Longest Palindromic Substring -- HARD 级别 Question SolutionGiven a string S, find the longest palindr ...

  3. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  4. *5. Longest Palindromic Substring (dp) previous blogs are helpful

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  5. LeetCode第[5]题(Java):Longest Palindromic Substring 标签:String、动态规划

    题目中文:求最长回文子串 题目难度:Medium 题目内容: Given a string s, find the longest palindromic substring in s. You ma ...

  6. 【LeetCode】Longest Palindromic Substring 解题报告

    DP.KMP什么的都太高大上了.自己想了个朴素的遍历方法. [题目] Given a string S, find the longest palindromic substring in S. Yo ...

  7. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  8. Leetcode Longest Palindromic Substring

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  9. 【leedcode】 Longest Palindromic Substring

    Given a , and there exists one unique longest palindromic substring. https://leetcode.com/problems/l ...

随机推荐

  1. HUD 1175 连连看

    连连看 Time Limit : 20000/10000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submiss ...

  2. Vcenter 和ESXi License过期解决办法

    Vcenter License过期解决办法 用client连接vcenter:  KEY必须用vCenter Server 5 Standard序列号如果使用使用的“vCenter Server 5 ...

  3. 学习git最好的方式

    1:登陆git官网网站 https://git-scm.com 2:点击esay to learn连接 3:点击Book连接 4:选择简体中文,下载PDF文档,也可以在线学习.

  4. Linux命令详解-文件系统管理

    1. 外部设备简介 (1.)硬盘的分类: IDE硬盘 ./dev/hda   hdb,hdc…  分区后:/dev/hda1  /dev/hda2 scsi硬盘: /dev/sda   sdb,sdc ...

  5. 团队作业(二):ASB

    团队作业(二):团队选题 题目四:基于Android的文件加密系统 系统名称:ASB 一.引言 1.1编写目的 (1)学习并熟悉掌握AES/DES加密算法的原理以及算法 (2)学习并熟悉Android ...

  6. Doris FE负载均衡配置

    0 背景概述 Doris完全兼容了mysql协议,并且Doris FE本身通过多follower选举机制选举出master,可以保证fe本身的高可用性,也可以通过加入observer fe节点来提高f ...

  7. ZooKeeper系列(2) 安装部署 (转)

    原文地址:http://www.cnblogs.com/wuxl360/p/5817489.html 一.Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模 ...

  8. mysql5.6修改字符编码,ERR:Illegal mix of collations for operation 'concat'

    mysql5.6修改字符编码,ERR:Illegal mix of collations for operation 'concat' 1.问题起因:搭建环境初始化mysql的时候看到mysql配置文 ...

  9. javascript变量作用域 — 全局变量

    javascript中,如果没有用var 声明一个变量,则该变量会被自动创建在全局作用域中,即使你是在某个函数中创建的,它也会成为全局变量,从而可以被另一个函数调用.

  10. XPath 常用语法札记

    * 不包含属性的元素 例如不包含属性的span: span[not(@*)] * 文本包含某部分的元素 例如文本包含Rank的元素: *[contains(text(),'Rank')] * 选择匹配 ...