个人总结-----非贪心算法的图的m着色判断及优化问题
1.问题描述:
对于著名的图的m着色,有两个主要的问题,一个是图的m色判定问题,一个是图的m色优化问题,描述如下。
图的m色判定问题: 给定无向连通图G和m种颜色。用这些颜色为图G的各顶点着色.问是否存在着色方法,使得G中任2邻接点有不同颜色。
图的m色优化问题:给定无向连通图G,为图G的各顶点着色, 使图中任2邻接点着不同颜色,问最少需要几种颜色。所需的最少颜色的数目m称为该图的色数。
对于网上或书上的一些求解方式主要用贪心算法求解的方式,也有用回溯法的方式(一般不用,时空太大)。如这位博主 http://blog.csdn.net/pi9nc/article/details/9339199 使用的贪心算法来求解上面两个问题。
对于该问题的贪心算法求解方式,是十分直观、易懂,而且时空复杂度低。我个人的一种方式是非贪心算法的,采用的是一种 "扫描--判断--增加" 的方式来进行求解,算法的时空复杂度类似于贪心求解的过程,且,也十分的清晰易懂。
2.对于图的m优化问题求解过程&思路:"扫描--判断--增加"
a. 初始化:全局颜色变量 C = 0 ;代表当前整张图,可用的颜色数量有 C 种,即最大色数为 0 ;
b. 扫描: 对于V有n个顶点的无向连通图,从V0开始线性扫描每一个顶点。
c. 判断: 对于扫描到的顶点Vi,尝试使用 1 - C 的颜色(1 - C 代表每一种不同的颜色)去着Vi,并判断V0 - Vi-1 顶点中与Vi相邻的顶点是否有颜色冲突。若没有则着上该颜色。
d. 增加: 若对于当前扫描节点Vi,对于所有的 1 - C 的颜色都没办法着色。这时,就需要增加一种新的颜色,让C++。并对Vi 着上新C值的颜色。
e. 线性扫描结束。
3.对于图的m着色判断问题求解&思路
图的m着色判断与上面的优化问题几乎相似。只是开始的时候令颜色变量C = m 。当在 "判断" 这一步时,若无法给Vi着色,则给出不能着色的结论。若能线性扫描完毕,则给出m色能够着色的结论。
4.图的m着色的优化问题代码
下面给出个人的图的m着色的优化问题的C++代码。

#include<iostream>
#include<string.h> #define N 5
using namespace std; bool isCollsion(bool a[][N] ,int c[],int i , int clor);
int main(){
bool a[N][N] = {{false,true,true,true,false},{true,false,true,true,true},{true,true,false,true,false},{true,true,true,false,true},{false,true,false,true,false}};
int c[N];
memset(c,-1,N*sizeof(int)); int i = 0;
int cl = 1; //cl 为颜色库 颜色的编号从 [1 - cl] 之间选择,初始的颜色库中 只有 1 种颜色
int j = 0;
for(i = 0; i < N;++i){ //遍历每一个节点 vi
for(j = 1; j <= cl ;++j){ //对vi 节点尝试使用颜色 j来着色(1<= j <= cl)
if(!isCollsion(a,c,i,j)){ // 若vi 着颜色j ,且与已经着色的节点(v0 - v(i-1))不发生任何着色冲突的话,就将vi着色为j
c[i] = j;
break;
}
if(c[i] == -1){ //若颜色库中所有颜色都不能为vi节点 着色的话,就增加一种颜色,cl++;并将 该颜色赋予节点i
c[i] = ++cl;
}
}
} cout<<cl<<endl;;
return 0;
} //检查 若vi 着颜色j ,与已经着色的节点(v0 - v(i-1)) 是否连通且不发生任何颜色冲突的话,
bool isCollsion(bool a[][N] ,int c[],int i , int clor){
int j = 0;
for(; j < i ;++j){
if(a[i][j] && c[j] == clor)return true;
}
return false;
}
5.实验结果截图

6.总结
复习到这部分的内容后,尤其是图的几个重要算法,无不与贪心算法有关系。都是以局部最优达到全局最优。这里针对图的m着色问题本人的一个非贪心算法的示例,具有简单、易懂、时空低的特点。So...继续学习,daydayup。算法和数据结构是非常重要的基础。
参考资料
计算机算法设计与分析
http://blog.csdn.net/pi9nc/article/details/9339199
个人总结-----非贪心算法的图的m着色判断及优化问题的更多相关文章
- 正則表達式re中的贪心算法和非贪心算法 在python中的应用
之前写了一篇有关正則表達式的文章.主要是介绍了正則表達式中通配符 转义字符 字符集 选择符和子模式 可选项和反复子模式 字符串的開始和结尾 ,有兴趣的能够查看博客内容. 此文章主要内容将要介绍re中的 ...
- python正则表达式01--贪心算法和非贪心算法findall()
import re st = 'asdfasxxixxdafqewxxlovexxsadawexxyouxxas' # . #点匹配除换行符外的任意字符 a0 = re.findall('xx.',s ...
- 剑指Offer——贪心算法
剑指Offer--贪心算法 一.基本概念 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解.虽然贪心算法不能对 ...
- 「面试高频」二叉搜索树&双指针&贪心 算法题指北
本文将覆盖 「字符串处理」 + 「动态规划」 方面的面试算法题,文中我将给出: 面试中的题目 解题的思路 特定问题的技巧和注意事项 考察的知识点及其概念 详细的代码和解析 开始之前,我们先看下会有哪些 ...
- Java 理论与实践: 非阻塞算法简介——看吧,没有锁定!(转载)
简介: Java™ 5.0 第一次让使用 Java 语言开发非阻塞算法成为可能,java.util.concurrent 包充分地利用了这个功能.非阻塞算法属于并发算法,它们可以安全地派生它们的线程, ...
- 贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikiped ...
- 贪心算法(2)-Kruskal最小生成树
什么是最小生成树? 生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起.一个图可以有许多不同的生成树.一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n ...
- 贪心算法:旅行商问题(TSP)
TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...
- Java 理论与实践: 非阻塞算法简介--转载
在不只一个线程访问一个互斥的变量时,所有线程都必须使用同步,否则就可能会发生一些非常糟糕的事情.Java 语言中主要的同步手段就是synchronized 关键字(也称为内在锁),它强制实行互斥,确保 ...
随机推荐
- c++开发环境搭建
>>>>>>>>>>>>>>>>>>>>>开发环境搭建<<&l ...
- zufe oj 引水工程( 巧妙地把在i建水设为e[0][i])
引水工程 时间限制: 3 Sec 内存限制: 128 MB提交: 11 解决: 6[提交][状态][讨论版] 题目描述 南水北调工程是优化水资源配置.促进区域协调发展的基础性工程,是新中国成立以来 ...
- g++多文件编译
头文件:A.h void test(); 源文件:A.cpp #include <iostream> #include<thread> #include<chrono&g ...
- Linux操作系统,服务器端的主流
1.无意之间,一直使用的Windows,其实也是在Unix的基础之上开发的,什么xp,win7等都是,就是Unix的一些堆砌,其实这样说也不对.但是windows的复杂程度比Linux要复杂,因为Wi ...
- php 流程控制switch实例
switch允许对一个标量(表达式)的多个可能结果做选择. 语法: switch (expr) { case result1: statement1 break; case result2: stat ...
- CSS 背景background实例
css背景background用于设置html标签元素的背景颜色.背景图片已经其他背景属性.本文章向码农介绍CSS 背景background使用方法和基本的使用实例.需要的码农可以参考一下. 一.Cs ...
- JS 更新
JavaScript概述 ECMAScript和JavaScript的关系 1996年11月,JavaScript的创造者--Netscape公司,决定将JavaScript提交给国际标准化组织ECM ...
- Python之模块(一)
模块 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护.为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少 ...
- 使用Python调用动态库
我个人在日常使用电脑时,经常需要使用Google,于是就要切换代理,基本上是一会儿切换为代理,一会儿切换成直连,老是打开internet 选项去设置,很不方便,于是我萌生了一个想法: 做一个开关,我想 ...
- 4. 纯 CSS 创作一个金属光泽 3D 按钮特效
原文地址:https://segmentfault.com/a/1190000014599280 HTML代码: <div class="box">BUTTON< ...