Detectron是Facebook的物体检测平台,今天宣布开源,它基于Caffe2,用Python写成,这次开放的代码中就包含了Mask R-CNN的实现。

除此之外,Detectron还包含了ICCV 2017最佳学生论文RetinaNet,Ross Girshick(RBG)此前的研究Faster R-CNN和RPN、Fast R-CNN、以及R-FCN的实现。

Detectron的基干(backbone)网络架构包括ResNeXt{50,101,152}、ResNet{50,101,152}、FPN和VGG16。

同时,Facebook还发布了70多种ImageNet-1k预训练模型的性能基准,包括用用1、2块GPU时,上述各种基干架构和检测算法相结合做区域建议、遮罩检测以及人体关键点检测的训练时间、推理时间等。

要使用Detectron,你需要先配置英伟达GPU(是的,它还不支持CPU)、Linux系统和Python2,还要安装Caffe2和COCO API。然后,三步装上Detectron:

Clone Detectron:

# DETECTRON=/path/to/clone/detectron
git clone https://github.com/facebookresearch/detectron $DETECTRON

设置Python模块:

cd $DETECTRON/lib && make

检查Detectron的测试通过:

python2 $DETECTRON/tests/test_spatial_narrow_as_op.py

这样,就足够用预训练模型做推理了。

如果要用Detectron来训练自己的检测模型,就需要先确保能通过符号链接lib/datasets/data找到数据集,然后用CMake创建定制的运算符库:

cd $DETECTRON/lib && make ops

并检查这些运算符的测试通过:

python2 $DETECTRON/tests/test_zero_even_op.py

Facebook还贴心地写了份上手教程,教你用预训练的Mask R-CNN来做物体检测。

如果要在本地图像上运行,只需要使用infer_simple.py工具,运行:

python2 tools/infer_simple.py \
   --cfg configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
   --output-dir /tmp/detectron-visualizations \
   --image-ext jpg \
   --wts https://s3-us-west-2.amazonaws.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train:coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
   demo

就能得到如下图所示的输出。

如果要在COCO数据集上做推理,需要运行:

python2 tools/test_net.py \
   --cfg configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
   TEST.WEIGHTS https://s3-us-west-2.amazonaws.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train:coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
   NUM_GPUS 1

上面这个例子,用了端到端预训练的Mask R-CNN,在一块GPU上运行。如果要使用多个GPU,需要在第二行之后添加 —multi-gpu-testing \ 并更改最后的NUM_GPUS数量。

截至量子位发稿,Detectron在GitHub上放出7小时,已经收获738颗星标、101次Fork。

RBG在Facebook上发帖介绍说,这个项目2016年7月启动,想要基于Caffe 2构建一个快速、灵活的物体检测系统,至今已经一年半的时间。Detectron系统本来是Facebook内部使用的,我们前面提到的Mask R-CNN和RetinaNet背后,都由Detectron提供支持。

除了RBG之外,Ilija Radosavovic、Georgia Gkioxari、Piotr Dollar和何恺明也参与了Detectron项目。

在Facebook内部,Detectron不仅用于研究,还用来为增强现实、商业诚信等方面的应用训练定制化的模型。这些模型训练完成后可以部署在云端或者移动设备上,由Caffe2运行时提供支持。

RBG说,Facebook将Detectron平台开源出来,是想要加速世界各地实验室的研究,推动物体检测的进展。

Now go forth and create algorithms to detect all of the things!

想用Detectron搞物体检测算法,你可能要用到下面这些链接:

Detectron开源代码:
https://github.com/facebookresearch/Detectron

相关物体检测论文:

Mask R-CNN
https://arxiv.org/abs/1703.06870

RetinaNet
https://arxiv.org/abs/1708.02002

Faster R-CNN和RPN
https://arxiv.org/abs/1506.01497

Fast R-CNN
https://arxiv.org/abs/1504.08083

R-FCN
https://arxiv.org/abs/1605.06409

性能基准和Model ZOO:
https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md

另外,你们可能还想去RBG大神的FB帖子底下表达一波感谢(以及质问开源代码为何拖了这么久):

https://www.facebook.com/ross.girshick/posts/10159910213745261

Mask R-CNN详解和安装的更多相关文章

  1. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  2. CNN详解

    CNN详解 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要就是卷积神经网络(CNN) ...

  3. 详解Linux安装GCC

    为你详解Linux安装GCC方法 2009-12-11 14:05 佚名 博客园 字号:T | T 现在很多程序员都应用GCC,怎样才能更好的应用GCC.本文以在Redhat Linux安装GCC4. ...

  4. 个人用户永久免费,可自动升级版Excel插件,使用VSTO开发,Excel催化剂安装过程详解及安装失败解决方法

    因Excel催化剂用了VSTO的开发技术,并且为了最好的用户体验,用了Clickonce的布署方式(无需人工干预自动更新,让用户使用如浏览器访问网站一般,永远是最新的内容和功能).对安装过程有一定的难 ...

  5. Windows系统Git安装教程(详解Git安装过程)

    Windows系统Git安装教程(详解Git安装过程)   今天更换电脑系统,需要重新安装Git,正好做个记录,希望对第一次使用的博友能有所帮助! 获取Git安装程序   到Git官网下载,网站地址: ...

  6. 【转载】 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html ------------------------------ ...

  7. 搭建Android开发环境附图详解+模拟器安装(JDK+Eclipse+SDK+ADT)

    ——搭建android开发环境的方式有多种,比如:JDK+Eclipse+SDK+ADT或者JDK+Eclipse+捆绑好的AndroidSDK或者Android Studio. Google 决定将 ...

  8. MVC图片上传详解 IIS (安装SSL证书后) 实现 HTTP 自动跳转到 HTTPS C#中Enum用法小结 表达式目录树 “村长”教你测试用例 引用provinces.js的三级联动

    MVC图片上传详解   MVC图片上传--控制器方法 新建一个控制器命名为File,定义一个Img方法 [HttpPost]public ActionResult Img(HttpPostedFile ...

  9. 深度学习基础(CNN详解以及训练过程1)

    深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Rest ...

  10. 详解Codis安装与部署

    Codis github上的介绍安装,里面很全,而且也有中/英文的,只不过按照github的步骤安装,会有一些坑,所以有了这么一篇文章. 在上一篇文章<Redis实用监控工具一览>中,介绍 ...

随机推荐

  1. C++中的成员对象

    原文链接: http://blog.csdn.net/rhzwan123/article/details/2105205 [概念] 成员对象:当一个类的成员是另一个类的对象时,这个对象就叫成员对象.概 ...

  2. [转]八幅漫画理解使用JSON Web Token设计单点登录系统

    上次在<JSON Web Token - 在Web应用间安全地传递信息>中我提到了JSON Web Token可以用来设计单点登录系统.我尝试用八幅漫画先让大家理解如何设计正常的用户认证系 ...

  3. 常用代码之七:静态htm如何包含header.htm和footer.htm。

    要实现这个有多种解决方案,比如asp, php, 服务器端技术,IFrame等,但本文所记录的仅限于用jQuery和纯htm的解决方案. <head> <title></ ...

  4. 使用C#和Thrift来访问Hbase实例

    今天试着用C#和Thrift来访问Hbase,主要参考了博客园上的这篇文章.查了Thrift,Hbase的资料,结合博客园的这篇文章,终于搞好了.期间经历了不少弯路,下面我尽量详细的记录下来,免得大家 ...

  5. Java 打印程序设计实例

    3.1 打印文本 3.1.1 应用场景 假设我们需要打印一个窗体的某个文本编辑域(可能只有几行,也可能包含多页)的内容,并且每页最多打印 54 行,如何实现呢? 3.1.2 解决方法 基本思路如下:首 ...

  6. django-salmonella的使用

    一.django-salmonella介绍 它是一个Django管理员raw_id_fields小部件替换,用于处理更改时显示对象的字符串值,并且可以通过模板覆盖. 二.安装 1.下载 $ pip i ...

  7. 关于generate用法的总结

    Abtract generate语句允许细化时间(Elaboration-time)的选取或者某些语句的重复.这些语句可以包括模块实例引用的语句.连续赋值语句.always语句.initial语句和门 ...

  8. (电工基地笔记)Vivado固化至SPI Flash

    如果从头开始做SPI Flash固化是有一些麻烦的,要在完成综合之后,打开 synthesized Design (图) (图) 然后在synthesized Design打开状态下,选择Tools- ...

  9. Golang之字符串格式化

    字符串格式化 // Go 之 字符串格式化 // // Copyright (c) 2015 - Batu // package main import ( "fmt" ) typ ...

  10. fork failed.: Cannot allocate memory

    在做压力测试时候: [root@666 ok]# webbench -c 5000 -t30 http://10.100.0.61/ Webbench - Simple Web Benchmark 1 ...