BloomFilter布隆过滤器使用
从上一篇可以得知,BloomFilter的关键在于hash算法的设定和bit数组的大小确定,通过权衡得到一个错误概率可以接受的结果。
算法比较复杂,也不是我们研究的范畴,我们直接使用已有的实现。
google的guava包中提供了BloomFilter类,我们直接使用它来进行一下简单的测试。
新建一个maven工程,引入guava包
<dependencies> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>22.0</version> </dependency> </dependencies>
测试分两步:
一 我们往过滤器里放一百万个数,然后去验证这一百万个数是否能通过过滤器,目的是校验是坏人是否一定被抓。
二 我们另找1万个不在这一百万范围内的数,去验证漏网之鱼的概率,也就是布隆过滤器的误伤情况。
import com.google.common.hash.BloomFilter; import com.google.common.hash.Funnels; import java.util.ArrayList; import java.util.List; /** * Created by admin on 17/7/7. * 布隆过滤器 */ public class Test { private static int size = 1000000; private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size); public static void main(String[] args) { for (int i = 0; i < size; i++) { bloomFilter.put(i); } for (int i = 0; i < size; i++) { if (!bloomFilter.mightContain(i)) { System.out.println("有坏人逃脱了"); } } List<Integer> list = new ArrayList<Integer>(1000); for (int i = size + 10000; i < size + 20000; i++) { if (bloomFilter.mightContain(i)) { list.add(i); } } System.out.println("有误伤的数量:" + list.size()); } }
运行后发现,没有坏人逃脱,当我们去遍历这一百万个数时,他们都在过滤器内被识别了出来。
误伤的数量是330.也就是有330个不在过滤器内的值,被认为在过滤器里,被误伤了。
错误概率是3%作用,为毛是3%呢。我们跟踪源码看一下就知道了。
在create的多个重载方法中,最终走的是有4个参数的那个。我们上面用的是有2个参数的,注意看图片最下面,我们不填第三方参数时,默认补了一个0.03,这个就代表了允许的错误概率是3%。第四个参数是哈希算法,默认是BloomFilterStrategies.MURMUR128_MITZ_64,这个我们不去管它,反正也不懂。
在第127行可以看到,要存下这一百万个数,位数组的大小是7298440,700多万位,实际上要完整存下100万个数,一个int是4字节32位,我们需要4X8X1000000=3千2百万位,差不多只用了1/5的容量,如果是HashMap,按HashMap 50%的存储效率,我们需要6千4百万位,所有布隆过滤器占用空间很小,只有HashMap的1/10-1/5作用。
128行是hash函数的数量,是5,也就是说系统觉得要保证3%的错误率,需要5个函数外加700多万位即可。用3%误差换十分之一的内存占用。
我们也可以修改这个错误概率,譬如我们改为0.0001万分之一。
private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, 0.0001);
再次运行看看
我们将28行改为10万个数,发现结果为“误伤12”。可以看到这个概率是比较靠谱的。
当概率为万分之一时,我们看看空间占用。
此时bit容量已经从700多万到1900万了,函数数量也从5变成了13.概率从3%缩减到万分之一。
这就是布隆过滤器的简单使用。具体的应用场景,具体实现。
BloomFilter布隆过滤器使用的更多相关文章
- 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中
第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...
- 三十七 Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中
Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...
- 将bloomfilter(布隆过滤器)集成到scrapy-redis中
Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...
- BloomFilter(布隆过滤器)
原文链接:http://blog.csdn.net/qq_38646470/article/details/79431659 1.概念: 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保 ...
- BloomFilter布隆过滤器
BloomFilter 简介 当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1.检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些 ...
- 使用BloomFilter布隆过滤器解决缓存击穿、垃圾邮件识别、集合判重
Bloom Filter是一个占用空间很小.效率很高的随机数据结构,它由一个bit数组和一组Hash算法构成.可用于判断一个元素是否在一个集合中,查询效率很高(1-N,最优能逼近于1). 在很多场景下 ...
- 白话布隆过滤器BloomFilter
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...
- 布隆过滤器(BloomFilter)持久化
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...
- HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍
布隆过滤器( Bloom filters) 数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块.但是它的效用是有限的.HFile数据块的默认大小是64KB,这个大 ...
随机推荐
- Selenium WebDriver 2.34.0 发布,支持Firefox22
Selenium WebDriver 2.34.0 发布,支持Firefox22http://automationqa.com/forum.php?mod=viewthread&tid=270 ...
- Javascript作用域详解。
javascript的作用域 是按照 函数来划分的. 网址:http://www.cnblogs.com/rubylouvre/archive/2009/08/21/1551270.html
- HCNP学习笔记之ICMP协议与ping原理以及用Python实现ping
一.ICMP协议分析 ICMP:Internet控制报文协议.由于IP协议并不是一个可靠的协议,它不保证数据被成功送达,那么,如何才能保证数据的可靠送达呢? 这里就需要使用到一个重要的协议模块ICMP ...
- 在两台服务器之间建立信任关系解决scp,ssh等不用输入密码等问题
A服务器(client)向B服务(server)SCP,SSH. A服务器:ssh-keygen -t rsa -C "kangzj" 一直回车. cd .ssh vim id_r ...
- 20145109 《Java程序设计》第七周学习总结
20145109 <Java程序设计>第七周学习总结 Chapter 13 Time & Date Date System.currentTimeMillis() return L ...
- HDU 5703
题意:给你一个数n,问将n分为正整数和的方案数.如n=3共四种,1 1 1 , 1 2 , 2 1 ,3 . 思路:隔板法,n个1,有n-1个空位,每个空位可以选择是否插入隔板,插入k(0<=k ...
- OSTU二值化算法
介绍 Ostu方法又名最大类间差方法,通过统计整个图像的直方图特性来实现全局阈值T的自动选取,其算法步骤为: 1) 先计算图像的直方图,即将图像所有的像素点按照0~255共256个bin,统计落在每个 ...
- BI项目中的ETL设计详解(数据抽取、清洗与转换 )(转载)
原文:http://www.cnblogs.com/reportmis/p/5939732.html ETL是BI项目最重要的一个环节,通常情况下ETL会花掉整个项目的1/3的时间,ETL设计的好坏直 ...
- 委托和事件C#演示代码
class Cat { private string _name; public Cat(string name) { _name = name; } public void Shout() { Co ...
- java对象的深浅clone
在Java语言中,数据类型分为值类型(基本数据类型)和引用类型,值类型包括int.double.byte.boolean.char等简单数据类型,引用类型包括类.接口.数组等复杂类型. 浅克隆和深克隆 ...