Find the Permutations

Sorting is one of the most used operations in real life, where Computer Science comes into act. It is well-known that the lower bound of swap based sorting is nlog(n). It means that the best possible sorting algorithm will take at least O(nlog(n)) swaps to sort a set of n integers. However, to sort a particular array of n integers, you can always find a swapping sequence of at most (n − 1) swaps, once you know the position of each element in the sorted sequence. For example consider four elements <1 2 3 4>. There are 24 possible permutations and for all elements you know the position in sorted sequence. If the permutation is <2 1 4 3>, it will take minimum 2 swaps to make it sorted. If the sequence is <2 3 4 1>, at least 3 swaps are required. The sequence <4 2 3 1> requires only 1 and the sequence <1 2 3 4> requires none. In this way, we can find the permutations of N distinct integers which will take at least K swaps to be sorted. Input Each input consists of two positive integers N (1 ≤ N ≤ 21) and K (0 ≤ K < N) in a single line. Input is terminated by two zeros. There can be at most 250 test cases. Output For each of the input, print in a line the number of permutations which will take at least K swaps.

Sample Input

3 1

3 0

3 2

0 0

Sample Output

3

1

2

【题意】

给出1~n的一个排列,可以通过一系列的交换变成{1,2,…,n}。比如{2,1,4,3}需要两次交换。给定n和k,统计有多少个排列至少需要k次交换才能变成{1,2,…,n}。

【分析】

  先考虑一下怎么计算最少变换次数。

  显然,如果把它弄成x个循环的乘积,最少变换次数为n-x。

  问题变成了,给你n个数,分成n-x份的圆排列方案。这个方案刚好就是第一类斯特林数啊。

  所以很简单,用第一类斯特林数的方程求方案就行了。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL unsigned long long
#define Maxn LL s1[][]; void init()
{
memset(s1,,sizeof());
s1[][]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
s1[i][j]=s1[i-][j-]+s1[i-][j]*(i-);
// printf("==%lld\n",s1[2][0]);
} int main()
{
init();
int n,k;
while()
{
scanf("%d%d",&n,&k);
if(n==&&k==) break;
printf("%llu\n",s1[n][n-k]);
}
return ;
}

注意要用unsigned long long ,还是看了别人的代码才知道的。。。不然会WA、。。。。

其实这题只是用了小小的置换的思想而已。

2017-01-11 19:16:56

【UVA 11077】 Find the Permutations (置换+第一类斯特林数)的更多相关文章

  1. Codeforces 715E - Complete the Permutations(第一类斯特林数)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...

  2. UVA - 11077 Find the Permutations (置换)

    Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...

  3. UVA11077 Find the Permutations —— 置换、第一类斯特林数

    题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...

  4. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  5. UVA 11077 - Find the Permutations(递推)

    UVA 11077 - Find the Permutations option=com_onlinejudge&Itemid=8&page=show_problem&cate ...

  6. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  7. 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  9. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

随机推荐

  1. 【uva11987】带删除的并查集

    题意:初始有N个集合,分别为 1 ,2 ,3 .....n.有三种操件1 p q 合并元素p和q的集合2 p q 把p元素移到q集合中3 p 输出p元素集合的个数及全部元素的和. 题解: 并查集.只是 ...

  2. 基本控件文档-UIKit结构图---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址  UIKit结构图 //转载请注明出处--本文永久链接:http://www.cnbl ...

  3. No 'Access-Control-Allow-Origin' Ajax跨域访问解决方案

    No 'Access-Control-Allow-Origin' header is present on the requested resource. 当使用ajax访问远程服务器时,请求失败,浏 ...

  4. js按值及引用传递中遇到的小问题

    有人闲的蛋疼,非要在函数中使用如下方式传值,尼玛一下把我搞糊涂了.于是决定发挥打破沙锅问到底的精神搞清楚它. var a = 1,b = [], c = {}; function f(a, b, c) ...

  5. Ubuntu中启用关闭Network-manager网络设置问题! 【Server版本】

    在UbuntuServer版本中,因为只存有命令行模式,所以要想进行网络参数设置,只能通过修改/etc/network/interfaces.具体设置方法如下: (1) UbuntuServer 修改 ...

  6. [bzoj1070] 修车

    这周学习了费用流,就写了几题.其中有一题就是bzoj上的修车,看起来很丧,交了6次都是除了样例全wa(事实证明样例说明不了什么,还会误导你……). 题目大意:有m个技术人员n辆车,一个技术人员只能同时 ...

  7. clientX,offsetX,layerX,pageX,screenX,X鼠标位置全解

    clientX,offsetX,layerX,pageX,screenX,X有时容易记混,通过测试当前的主流浏览器疏理了自己的一些看法以供参考. Chrome下(测试版本为51.0.2704.106  ...

  8. [Leetcode Week15]Populating Next Right Pointers in Each Node II

    Populating Next Right Pointers in Each Node II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/popul ...

  9. 【bzoj4765】普通计算姬

    一道奇奇怪怪的数据结构题? 把树线性化,然后分块维护吧. 为了加速,求和用树状数组维护每个块的值. #include<bits/stdc++.h> #define N 100010 #de ...

  10. iframe的一些介绍

    iframe 元素会创建包含另外一个文档的内联框架(即行内框架) 提示:您可以把需要的文本放置在 <iframe> 和 </iframe> 之间,这样就可以应对无法理解 ifr ...