【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations
Sorting is one of the most used operations in real life, where Computer Science comes into act. It is well-known that the lower bound of swap based sorting is nlog(n). It means that the best possible sorting algorithm will take at least O(nlog(n)) swaps to sort a set of n integers. However, to sort a particular array of n integers, you can always find a swapping sequence of at most (n − 1) swaps, once you know the position of each element in the sorted sequence. For example consider four elements <1 2 3 4>. There are 24 possible permutations and for all elements you know the position in sorted sequence. If the permutation is <2 1 4 3>, it will take minimum 2 swaps to make it sorted. If the sequence is <2 3 4 1>, at least 3 swaps are required. The sequence <4 2 3 1> requires only 1 and the sequence <1 2 3 4> requires none. In this way, we can find the permutations of N distinct integers which will take at least K swaps to be sorted. Input Each input consists of two positive integers N (1 ≤ N ≤ 21) and K (0 ≤ K < N) in a single line. Input is terminated by two zeros. There can be at most 250 test cases. Output For each of the input, print in a line the number of permutations which will take at least K swaps.
Sample Input
3 1
3 0
3 2
0 0
Sample Output
3
1
2
【题意】
给出1~n的一个排列,可以通过一系列的交换变成{1,2,…,n}。比如{2,1,4,3}需要两次交换。给定n和k,统计有多少个排列至少需要k次交换才能变成{1,2,…,n}。
【分析】
先考虑一下怎么计算最少变换次数。
显然,如果把它弄成x个循环的乘积,最少变换次数为n-x。
问题变成了,给你n个数,分成n-x份的圆排列方案。这个方案刚好就是第一类斯特林数啊。
所以很简单,用第一类斯特林数的方程求方案就行了。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL unsigned long long
#define Maxn LL s1[][]; void init()
{
memset(s1,,sizeof());
s1[][]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
s1[i][j]=s1[i-][j-]+s1[i-][j]*(i-);
// printf("==%lld\n",s1[2][0]);
} int main()
{
init();
int n,k;
while()
{
scanf("%d%d",&n,&k);
if(n==&&k==) break;
printf("%llu\n",s1[n][n-k]);
}
return ;
}
注意要用unsigned long long ,还是看了别人的代码才知道的。。。不然会WA、。。。。
其实这题只是用了小小的置换的思想而已。
2017-01-11 19:16:56
【UVA 11077】 Find the Permutations (置换+第一类斯特林数)的更多相关文章
- Codeforces 715E - Complete the Permutations(第一类斯特林数)
Codeforces 题面传送门 & 洛谷题面传送门 神仙题.在 AC 此题之前,此题已经在我的任务计划中躺了 5 个月的灰了. 首先考虑这个最短距离是什么东西,有点常识的人(大雾)应该知道, ...
- UVA - 11077 Find the Permutations (置换)
Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...
- UVA11077 Find the Permutations —— 置换、第一类斯特林数
题目链接:https://vjudge.net/problem/UVA-11077 题意: 问n的全排列中多有少个至少需要交换k次才能变成{1,2,3……n}. 题解: 1.根据过程的互逆性,可直接求 ...
- 【CF715E】Complete the Permutations(容斥,第一类斯特林数)
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...
- UVA 11077 - Find the Permutations(递推)
UVA 11077 - Find the Permutations option=com_onlinejudge&Itemid=8&page=show_problem&cate ...
- 【HDU 4372】 Count the Buildings (第一类斯特林数)
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 如何快速求解第一类斯特林数--nlog^2n + nlogn
目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...
- 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...
随机推荐
- 使用BackgroundWorker
1,WPF应用程序为单线程模型(STAThread),所有UI控件都是主线程创建的,只有主线程能操作UI元素的显示. 2,其他工作线程要维护UI控件的显示,需调用主线程的Dispather,执行Inv ...
- 基于Android的简单聊天工具-服务器端
1.数据库用的mysql,一共有3张表,一张用户表user.一张朋友列表friend和一张消息表message. 1 User table 用户表 uid 主键自动生成 userName 昵称 use ...
- static class 和 non static class 的区别
static class non static class 1.用static修饰的是内部类,此时这个 内部类变为静态内部类:对测试有用: 2.内部静态类不需要有指向外部类的引用: 3.静态类只能访问 ...
- Keil MDK 5.14 仿真时System Viewer菜单显示空白和Peripherals菜单无外设寄存器
keil mdk5.14新建工程进行仿真时,进入Debug环境发现System Viewer菜单显示空白,Peripherals菜单没有外设寄存器.如图1和图2所示.打开Oprons for Targ ...
- 怎么快速入门一个老的java项目
作者:eilen著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 1.有文档肯定先看文档,先看设计文档,产品的.技术的设计文档,接口文档写的好的可以看看,要是写的不好不着急看. 2 ...
- liunx命令大全
Linux常用命令大全 Linux常用命令大全(非常全!!!) 最近都在和Linux打交道,感觉还不错.我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人 ...
- node-session
session cookie 虽然很方便,但是使用 cookie 有一个很大的弊端,cookie 中的所有数据在客户端就可以被修改,数据非常容易被伪造,那么一些重要的数据就不能存放在 cookie 中 ...
- asp.net的Server.MapPath方法
Server.MapPath()的功能: 返回与 Web 服务器上的指定虚拟路径相对应的物理文件路径. 命名空间: System.Web 程序集: System.Web(在 System.Web.dl ...
- Java8之Stream/Map
本篇用代码示例结合JDk源码讲了Java8引入的工具接口Stream以及新Map接口提供的常用默认方法. 参考:http://winterbe.com/posts/2014/03/16/java ...
- Win7下安装Oracle 10g
首先下对版本,Oracle 10g支持Win7版(32位): 10203_vista_w2k8_x86_production_db.zip 10203_vista_w2k8_x86_productio ...