go——方法
方法是与对象实例绑定的特殊函数。
方法是面向对象编程的基本概念,用于维护和展示对象的自身状态。
对象是内敛的,每个实例都有各自不同的独立特征,以属性和方法来暴露对外通信接口。
普通函数则专注于算法流程,通过接收参数来完成特定逻辑算法,并最终返回结果。
换句话说,方法是有关联状态的,而函数通常没有。
方法和函数定义语法区别在于前者有前置实例接收参数(receiver),编译器以此确定方法所属类型。
在某些语言里,尽管没有显式定义,但会在调用时隐式传递this实例参数。
可以为当前包以及除接口和指针之外的任何类型定义方法。
package main import "fmt" type N int //自定义类型 func (n N) toString() string { //方法本质上就是绑定在某个实例上的函数,与函数相比就是多了一个接收参数,来说明方法所属。
return fmt.Sprintf("%#x", n)
} func main() {
var a N = 25 //调用方法必须有实例对象
fmt.Println(a.toString()) //0x19
}
方法同样不支持重载(overload)。receiver参数名没有限制,按惯例会选用简短有意义的名称。
如果方法内部并不引用实例,可省略参数名,仅保留类型。
package main import "fmt" type N int func (N) test() {
fmt.Println("hello, world")
} func main() {
var n N = 3
n.test()
}
方法可以看作特殊函数,那么receiver的类型自然可以看作是基础类型或指针类型。
这会关系到调用时对象实例是否被复制。
package main import "fmt" type N int func (n N) value() {
n++
fmt.Printf("v: %p, %v\n", &n, n)
} func (n *N) pointer() { //指针类型
(*n)++ //通过指针反取得到数据
fmt.Printf("p: %p, %v\n", n, *n)
} func main() {
var a N = 10 a.value() //值传递,复制
a.pointer() //指针引用传递,共用 fmt.Printf("a: %p, %v\n", &a, a)
} /*
v: 0xc00004e088, 11
p: 0xc00004e080, 11 //通过指针传值,其实是指向原数据
a: 0xc00004e080, 11
*/
(n N)与(n *N):定义的是n N,那么只能说明指针是一个值的基础数据。
可使用实例值或指针调用方法,编译器会根据方法的receiver类型自动在基础类型和指针类型间转换。
package main import "fmt" type N int func (n N) value() {
n++
fmt.Printf("v: %p, %v\n", &n, n)
} func (n *N) pointer() {
(*n)++
fmt.Printf("p: %p, %v\n", n, *n)
} func main() {
var a N = 10
p := &a fmt.Printf("a: %p, %v\n", &a, a)
a.value()
a.pointer() //这里虽然传递的是整数类型,但是编译器会自动判断 p.value()
p.pointer()
fmt.Printf("a: %p, %v\n", &a, a)
} /*
a: 0xc00004e080, 10 v: 0xc00004e098, 11 //复制值,+1,并没有改变原数据,变量指向了另一个内存地址
p: 0xc00004e080, 11 //指针传递,+1,改变了元数据 v: 0xc00004e0d0, 12 //11 + 1
p: 0xc00004e080, 12 //11 + 1 a: 0xc00004e080, 12 //使用指针传递的时候,值改变并不会改变变量的内存地址
*/
需要注意的是不能用多层指针调用方法。
package main import "fmt" type N int func (n N) value() {
n++
fmt.Printf("v: %p, %v\n", &n, n)
} func (n *N) pointer() {
(*n)++
fmt.Printf("p: %p, %v\n", n, *n)
} func main() {
var a N = 25 p := &a
p2 := &p p2.value() //calling method value with receiver p2 (type **N) requires explicit dereference
p2.pointer()
}
指针类型的receiver必须是合法指针(包括nil),或能获取实例地址。
package main import "fmt" type X struct{} func (x, *X) test() {
fmt.Println("hi!")
} func main() {
var a *X
X{}.test() //结果体没有指针属性 }
可以像访问匿名字段成员那样调用方法,由编译器负责查找。
package main import (
"sync"
) type data struct {
sync.Mutex
buf [1024]byte
} func main() {
d := data{}
d.Lock() //直接调用结构体字段的方法
defer d.Unlock()
}
方法也会有同名遮蔽问题。但利用这种特性,可实现类似覆盖操作。
package main import "fmt" type user struct{} type manager struct {
user
} func (user) toString() string {
return "user"
} func (m manager) toString() string {
return m.user.toString() + ",manager"
} func main() {
var m manager
fmt.Println(m.toString()) //user,manager
fmt.Println(m.user.toString()) //user
}
尽管可以直接访问匿名字段的成员和方法,但是它们依然不属于继承关系。
类型有一个与之相关的方法集,这决定了它是否实现了某个接口
类型T方法集包含所有receiver T方法
类型*T方法集包含所有receiver T + *T方法
匿名嵌入S,T方法集包含所有receiver S方法
匿名嵌入*S, T方法集包含所有receiver S + *S方法
匿名嵌入S或*S, *T方法集包含所有receiver S + *S
package main import (
"fmt"
"reflect"
) type S struct{} type T struct {
S
} func (S) sVal() {}
func (*S) sPtr() {}
func (T) tVal() {}
func (*S) tPtr() {} func methodSet(a interface{}) {
t := reflect.TypeOf(a) for i, n := 0, t.NumMethod(); i < n; i++ {
m := t.Method(i)
fmt.Println(m.Name, m.Type)
}
} func main() {
var t T
methodSet(t)
fmt.Println("-------------")
methodSet(&t)
}
方法集仅影响接口实现和方法表达式转换,与通过实例或实例指针调用方法无关。
实例并不使用方法集,而是直接调用(或通过隐式字段名。
面向对象的三大特征“封装”、“继承”、“多态”,go语言仅实现了部分特征,它更倾向于“组合大于继承”这种思想。
将模块分解成相互独立的更小单元,分别处理不同方面的需求,最后以匿名嵌入组合到一起。
而其简短一致的调用方式,更是隐藏了内部实现细节
没有父子组合依赖,不会破坏封装。且整体和局部松耦合,可任意增加来实现扩展。
各单元持有单一责任,互无关联,实现和维护更加简单。
方法和函数一样,除直接调用外,还可以赋值给变量,或作为参数传递。
依照具体引用的方式不同,可分为expression和value两种状态。
通用类型引用的method expression会被还原成普通函数样式,receiver是第一参数,调用时须显式传参。
至于类型,可以是T或*T,只要目标方法存在于该类型方法集中即可。
package main import "fmt" type N int func (n N) test() {
fmt.Printf("test.n: %p, %d\n", &n, n)
} func main() {
var n N = 25
fmt.Printf("main.n: %p, %d\n", &n, n) f1 := N.test //直接将方法赋值给变量
f1(n) f2 := (*N).test
f2(&n) N.test(n) //直接以表达式方式调用
(*N).test(&n)
} /*
main.n: 0xc00004e080, 25
test.n: 0xc00004e098, 25
test.n: 0xc00004e0b8, 25
*/
基于实例或指针引用的method value,参数签名不不会改变,依旧按正常方式调用。
但当method value被赋值给变量或作为参数传递时,会立即计算并赋值该方法执行所需的receiver对象
与其绑定,以便在稍后执行,能隐式传入receiver参数。
package main import "fmt" type N int func (n N) test() {
fmt.Printf("test.n: %p, %v\n", &n, n)
} func main() {
var n N = 100
p := &n n++
f1 := n.test n++
f2 := p.test n++
fmt.Printf("main.n: %p, %v\n", p, n) f1()
f2() } /*
main.n: 0xc00000a168, 103
test.n: 0xc00000a1a0, 101
test.n: 0xc00000a1b0, 102
*/
编译器会为method value生成一个包装函数,实现间接调用。
至于receiver复制,和闭包的实现方法基本一致,打包成funcval,经由DX寄存器传递。
当method value作为参数时,会复制给receiver在内的整个method value。
package main import "fmt" type N int func call(m func()) {
m()
} func (n N) test() {
fmt.Printf("test.n: %p, %v\n", &n, n)
}
func main() {
var n N = 100
p := &n fmt.Printf("main.n: %p, %v\n", p, n) n++
call(n.test) n++
call(p.test) } /*
main.n: 0xc00004e080, 100
test.n: 0xc00004e098, 101
test.n: 0xc00004e0b8, 102
*/
如果目标方法的receiver是指针类型,那么被复制的仅是指针。
package main import "fmt" type N int func (n *N) test() {
fmt.Printf("test.n: %p, %v\n", n, *n)
} func main() {
var n N = 100
p := &n n++
f1 := n.test n++
f2 := p.test n++
fmt.Printf("main.n: %p, %v\n", p, n) f1()
f2()
} /*
main.n: 0xc00004e080, 103
test.n: 0xc00004e080, 103
test.n: 0xc00004e080, 103
*/
go——方法的更多相关文章
- javaSE27天复习总结
JAVA学习总结 2 第一天 2 1:计算机概述(了解) 2 (1)计算机 2 (2)计算机硬件 2 (3)计算机软件 2 (4)软件开发(理解) 2 (5) ...
- mapreduce多文件输出的两方法
mapreduce多文件输出的两方法 package duogemap; import java.io.IOException; import org.apache.hadoop.conf ...
- 【.net 深呼吸】细说CodeDom(6):方法参数
本文老周就给大伙伴们介绍一下方法参数代码的生成. 在开始之前,先补充一下上一篇烂文的内容.在上一篇文章中,老周检讨了 MemberAttributes 枚举的用法,老周此前误以为该枚举不能进行按位操作 ...
- IE6、7下html标签间存在空白符,导致渲染后占用多余空白位置的原因及解决方法
直接上图:原因:该div包含的内容是靠后台进行print操作,输出的.如果没有输出任何内容,浏览器会默认给该空白区域添加空白符.在IE6.7下,浏览器解析渲染时,会认为空白符也是占位置的,默认其具有字 ...
- 多线程爬坑之路-Thread和Runable源码解析之基本方法的运用实例
前面的文章:多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类) 多线程爬坑之路-Thread和Runable源码解析 前面 ...
- [C#] C# 基础回顾 - 匿名方法
C# 基础回顾 - 匿名方法 目录 简介 匿名方法的参数使用范围 委托示例 简介 在 C# 2.0 之前的版本中,我们创建委托的唯一形式 -- 命名方法. 而 C# 2.0 -- 引进了匿名方法,在 ...
- ArcGIS 10.0紧凑型切片读写方法
首先介绍一下ArcGIS10.0的缓存机制: 切片方案 切片方案包括缓存的比例级别.切片尺寸和切片原点.这些属性定义缓存边界的存在位置,在某些客户端中叠加缓存时匹配这些属性十分重要.图像格式和抗锯齿等 ...
- [BOT] 一种android中实现“圆角矩形”的方法
内容简介 文章介绍ImageView(方法也可以应用到其它View)圆角矩形(包括圆形)的一种实现方式,四个角可以分别指定为圆角.思路是利用"Xfermode + Path"来进行 ...
- JS 判断数据类型的三种方法
说到数据类型,我们先理一下JavaScript中常见的几种数据类型: 基本类型:string,number,boolean 特殊类型:undefined,null 引用类型:Object,Functi ...
- .NET Core中间件的注册和管道的构建(3) ---- 使用Map/MapWhen扩展方法
.NET Core中间件的注册和管道的构建(3) ---- 使用Map/MapWhen扩展方法 0x00 为什么需要Map(MapWhen)扩展 如果业务逻辑比较简单的话,一条主管道就够了,确实用不到 ...
随机推荐
- 一种480 MHz无线数传模块的设计
一种480 MHz无线数传模块的设计 来源:电子技术应用2012年第6期 作者:严 冬,黄 聃,王 平,彭 杰,朱柏寒2012/8/13 16:56:32 关键词: 微处理器|微控制器 物联网 RF ...
- libubox-runqueue
参考:libubox [4] - uloop runqueue ustream 任务队列是通过uloop定时器实现,把定时器超时时间设置为1,通过uloop事件循环来处理定时器就会处理任务队列中的ta ...
- 【JMeter4.0】之遇到的问题总结(持续更新)
目录: 一.图形结果监听器选择文件报错 二.TCP取样器压测出现500 错误,读取数据超时 三.如何解决JMeter通过JDBC访问MySQL的问题总结 四.如何解决JMeter通过JDBC访问Ora ...
- 当input被选中时候获取改input的多个属性值
<input name="selectTicket" class="selectTic" data-property="${couponDeta ...
- HTML 中框架、层的运用
本章目标:掌握框架结构<frameset><frame><iframe> 掌握组织元素:span和div 本章重点:框架结构<frameset>< ...
- 【BZOJ】3433: [Usaco2014 Jan]Recording the Moolympics (贪心)
http://www.lydsy.com/JudgeOnline/problem.php?id=3433 想了好久啊....... 想不出dp啊......sad 后来看到一英文题解......... ...
- (转)java Exception层次结构详解
转自:http://www.importnew.com/14688.html 1. JAVA异常层次结构 异常指不期而至的各种状况,如:文件找不到.网络连接失败.非法参数等.异常是一个事件,它发生在程 ...
- Android音频文件浏览+音频播放
该Demo执行后,会显示全部你sd卡上的音乐文件列表, 并能够点击列表选择某一首歌曲进行播放. 执行效果: 点击download出现: 然后点击歌曲调用系统播放器播放. 源码: activity_au ...
- Spring MVC multipart/form-data Controller 400
问题很简单是解析器定义问题 SpringMVC默认解析器 <bean id="multipartResolver" class="org.springframewo ...
- JDB调试之小试牛刀
用JDK自带工具JDB调试示例程序HelloJDB(d:\jdb\HelloJDB) HelloJDB代码如下: public class HelloJDB { public static void ...