• Concept in English
  • Coding Portion
  • 评估回归的性能指标——R平方指标
  • 比较分类和回归

Continuous supervised learning 连续变量监督学习

Regression 回归

Continuous:有一定次序,且可以比较大小

一、Concept in English

Slope: 斜率

Intercept: 截距

coefficient:系数

二、Coding Portion

Google: sklearn regression



import numpy
import matplotlib.pyplot as plt from ages_net_worths import ageNetWorthData ages_train, ages_test, net_worths_train, net_worths_test = ageNetWorthData() from sklearn.linear_model import LinearRegression reg = LinearRegression()
reg.fit(ages_train, net_worths_train) ### get Katie's net worth (she's 27)
### sklearn predictions are returned in an array, so you'll want to index into
### the output to get what you want, e.g. net_worth = predict([[27]])[0][0] (not
### exact syntax, the point is the [0] at the end). In addition, make sure the
### argument to your prediction function is in the expected format - if you get
### a warning about needing a 2d array for your data, a list of lists will be
### interpreted by sklearn as such (e.g. [[27]]).
km_net_worth = 1.0 ### fill in the line of code to get the right value
km_net_worth = reg.predict([[27]])[0][0]
### get the slope
### again, you'll get a 2-D array, so stick the [0][0] at the end
slope = 0. ### fill in the line of code to get the right value
slope = reg.coef_[0][0]
#print reg.coef_ ### get the intercept
### here you get a 1-D array, so stick [0] on the end to access
### the info we want
intercept = 0. ### fill in the line of code to get the right value
intercept = reg.intercept_[0] ### get the score on test data
test_score = 0. ### fill in the line of code to get the right value
test_score = reg.score(ages_test,net_worths_test) ### get the score on the training data
training_score = 0. ### fill in the line of code to get the right value
training_score = reg.score(ages_train,net_worths_train) ### print all the value
def submitFit():
# all of the values in the returned dictionary are expected to be
# numbers for the purpose of the grader.
return {"networth":km_net_worth,
"slope":slope,
"intercept":intercept,
"stats on test":test_score,
"stats on training": training_score}

三、评估回归的性能指标

评估拟合程度

3.1 最小化误差平方和

SSE sum of Squared Errors

  • 相关算法实现

1.Ordinary Least Squares(OLS,普通最小二乘法)

2.Gradient Descent (梯度下降算法)

不足: 添加的数据越多,误差平方的和必然增加,但并不代表拟合程度不好

解决方案: R平方指标

3.2 R平方指标

r平方越高,性能越好(MAX = 1)

定义: 有多少输出的改变能用输入的改变解释

优点: 与训练点的数量无关

  • Sklearn中的R平方
print "r-squared score:",reg.score(x,y)

R平方有可能小于0!

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

四、比较分类和回归

特性 监督分类 回归
输出类型 标签(离散) 值(连续)
寻找的结果(可视化) 决策边界 最佳拟合曲线
评判模型的标准 准确度 误差平方和or R平方指标

【Udacity】线性回归方程 Regression的更多相关文章

  1. Andrew Ng机器学习算法入门((六):多变量线性回归方程求解

    多变量线性回归 之前讨论的都是单变量的情况.例如房价与房屋面积之前的关系,但是实际上,房价除了房屋面积之外,还要房间数,楼层等因素相关.那么此时就变成了一个多变量线性回归的问题.在实际问题中,多变量的 ...

  2. 【ML】求解线性回归方程(Linear Regression)

    参考资料:openclassroom 线性回归(Linear Regression) 为了拟合10岁以下儿童年龄(x1)与身高(y)之间的关系,我们假设一个关于x的函数h(x): h(x) = Θ0+ ...

  3. MATLAB线性回归方程与非线性回归方程的相关计算

    每次比赛都需要查一下,这次直接总结到自己的博客中. 以这个为例子: 2.线性方程的相关计算 x=[1,2,3,4,5]';%参数矩阵 X=[ones(5,1),x];%产生一个5行一列的矩阵,后接x矩 ...

  4. 从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别

    1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优 ...

  5. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  6. 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)

    从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...

  7. 线性回归 Linear regression(3) 线性回归的概率解释

    这篇博客从一种方式推导了Linear regression 线性回归的概率解释,内容来自Standford公开课machine learning中Andrew老师的讲解. 线性回归的概率解释 在Lin ...

  8. 【机器学习实战】第9章 树回归(Tree Regression)

    第9章 树回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/ ...

  9. 【机器学习实战】第8章 预测数值型数据:回归(Regression)

    第8章 预测数值型数据:回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...

随机推荐

  1. head first

      1, insert 单引号时,使用/转义 2, 不要用NULL, 查找时使用isNull 来判断. 3, 用and / or 连接两个not 时,要写两个NOT 4,delete from tab ...

  2. archlinux安装串口终端ckermit

    1. 将usb转串口连接到PC上.通过dmesg命令可以查看USB转串口是否被PC识别.   显示 ……attachec to ttyUSB0即被识别.   linux系统一般有USB转串口驱动(PL ...

  3. Flutter Navigator 跳转

    1,routes 静注册,使用 跳转 Navigator.pushNamed(context, "/main"); 2,静态跳转及销毁当前页面使用 Navigator.pushNa ...

  4. git获取代码,拉取最新代码,更新代码等

    有句话说的很好:git是弓,我们的代码是箭,github就是靶子.我们需要把自己的代码存放到github的仓库上. 下图为截取的阮一峰博客的关于git常用命令总结的一张图片: 1.一开始从零获取代码 ...

  5. PIE SDK与GeoServer结合说明文档

    1.  GeoServer简介 GeoServer是OpenGIS Web服务器规范的J2EE实现的社区开源项目,利用GeoServer可以方便的发布地图数据,允许用户对特征数据进行更新.删除.插入操 ...

  6. UML-4-初始不是需求阶段

    1.初始阶段到底做什么? 确定项目外包还是自研.成本多少. 系统边界 关键的10%的用例.非功能性需求分析,业务案例创建 开发环境准备 而需求分析是在细化阶段进行的. 2.初始阶段(或细化阶段早期)应 ...

  7. mysql 设置默认时间为now()

    TIMESTAMP的变体1,TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP在创建新记录和修改现有记录的时候都对这个数据列 ...

  8. html5在手机熄屏后倒计时会出现延迟情况

    今天开发了一个手机端的倒计时,然后同事说出现了Bug,怎么回事呢?Bug很简单,就是在手机返回主界面或者熄屏后倒计时会暂停在熄屏前的时间(注意时间是页面加载时获取的服务器的时间),问题很简单,知道问题 ...

  9. 宜人贷项目里-----正则匹配input输入月份规则

    在标签上可以直接进行校验如下,如果只调数字键盘type=number不好用可以用type=tel <input name="creditDate" oninput=" ...

  10. RealProxy AOP的实现

    微软有一篇实现 一下是对于该实现的理解 https://msdn.microsoft.com/zh-cn/library/dn574804.aspx public class DynamicProxy ...