• Concept in English
  • Coding Portion
  • 评估回归的性能指标——R平方指标
  • 比较分类和回归

Continuous supervised learning 连续变量监督学习

Regression 回归

Continuous:有一定次序,且可以比较大小

一、Concept in English

Slope: 斜率

Intercept: 截距

coefficient:系数

二、Coding Portion

Google: sklearn regression



import numpy
import matplotlib.pyplot as plt from ages_net_worths import ageNetWorthData ages_train, ages_test, net_worths_train, net_worths_test = ageNetWorthData() from sklearn.linear_model import LinearRegression reg = LinearRegression()
reg.fit(ages_train, net_worths_train) ### get Katie's net worth (she's 27)
### sklearn predictions are returned in an array, so you'll want to index into
### the output to get what you want, e.g. net_worth = predict([[27]])[0][0] (not
### exact syntax, the point is the [0] at the end). In addition, make sure the
### argument to your prediction function is in the expected format - if you get
### a warning about needing a 2d array for your data, a list of lists will be
### interpreted by sklearn as such (e.g. [[27]]).
km_net_worth = 1.0 ### fill in the line of code to get the right value
km_net_worth = reg.predict([[27]])[0][0]
### get the slope
### again, you'll get a 2-D array, so stick the [0][0] at the end
slope = 0. ### fill in the line of code to get the right value
slope = reg.coef_[0][0]
#print reg.coef_ ### get the intercept
### here you get a 1-D array, so stick [0] on the end to access
### the info we want
intercept = 0. ### fill in the line of code to get the right value
intercept = reg.intercept_[0] ### get the score on test data
test_score = 0. ### fill in the line of code to get the right value
test_score = reg.score(ages_test,net_worths_test) ### get the score on the training data
training_score = 0. ### fill in the line of code to get the right value
training_score = reg.score(ages_train,net_worths_train) ### print all the value
def submitFit():
# all of the values in the returned dictionary are expected to be
# numbers for the purpose of the grader.
return {"networth":km_net_worth,
"slope":slope,
"intercept":intercept,
"stats on test":test_score,
"stats on training": training_score}

三、评估回归的性能指标

评估拟合程度

3.1 最小化误差平方和

SSE sum of Squared Errors

  • 相关算法实现

1.Ordinary Least Squares(OLS,普通最小二乘法)

2.Gradient Descent (梯度下降算法)

不足: 添加的数据越多,误差平方的和必然增加,但并不代表拟合程度不好

解决方案: R平方指标

3.2 R平方指标

r平方越高,性能越好(MAX = 1)

定义: 有多少输出的改变能用输入的改变解释

优点: 与训练点的数量无关

  • Sklearn中的R平方
print "r-squared score:",reg.score(x,y)

R平方有可能小于0!

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

四、比较分类和回归

特性 监督分类 回归
输出类型 标签(离散) 值(连续)
寻找的结果(可视化) 决策边界 最佳拟合曲线
评判模型的标准 准确度 误差平方和or R平方指标

【Udacity】线性回归方程 Regression的更多相关文章

  1. Andrew Ng机器学习算法入门((六):多变量线性回归方程求解

    多变量线性回归 之前讨论的都是单变量的情况.例如房价与房屋面积之前的关系,但是实际上,房价除了房屋面积之外,还要房间数,楼层等因素相关.那么此时就变成了一个多变量线性回归的问题.在实际问题中,多变量的 ...

  2. 【ML】求解线性回归方程(Linear Regression)

    参考资料:openclassroom 线性回归(Linear Regression) 为了拟合10岁以下儿童年龄(x1)与身高(y)之间的关系,我们假设一个关于x的函数h(x): h(x) = Θ0+ ...

  3. MATLAB线性回归方程与非线性回归方程的相关计算

    每次比赛都需要查一下,这次直接总结到自己的博客中. 以这个为例子: 2.线性方程的相关计算 x=[1,2,3,4,5]';%参数矩阵 X=[ones(5,1),x];%产生一个5行一列的矩阵,后接x矩 ...

  4. 从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别

    1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优 ...

  5. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  6. 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)

    从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...

  7. 线性回归 Linear regression(3) 线性回归的概率解释

    这篇博客从一种方式推导了Linear regression 线性回归的概率解释,内容来自Standford公开课machine learning中Andrew老师的讲解. 线性回归的概率解释 在Lin ...

  8. 【机器学习实战】第9章 树回归(Tree Regression)

    第9章 树回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/ ...

  9. 【机器学习实战】第8章 预测数值型数据:回归(Regression)

    第8章 预测数值型数据:回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...

随机推荐

  1. [转] watch 命令使用(linux监控状态)

    [From] https://jingyan.baidu.com/article/495ba841c5a31738b30eded4.html 可以使用watch 命令设置执行间隔,去反复间隔一条命令或 ...

  2. django 创建QueryDict类型报错

    报错信息:django.core.exceptions.ImproperlyConfigured: Requested setting LOGGING_CONFIG, but settings are ...

  3. centos7 配置php-fpm

    1.复制相应的文件cp /usr/local/php7/etc/php-fpm.conf.default /usr/local/php7/etc/php-fpm.confcp /usr/local/p ...

  4. spark跑YARN模式或Client模式提交任务不成功(application state: ACCEPTED)

    不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPA ...

  5. 004-C3P0连接池工具类模板

    package ${enclosing_package}; import java.sql.Connection; import java.sql.ResultSet; import java.sql ...

  6. 【CSS】 布局之剖析负边距

    我们都知道,一个元素框的大小是由元素内容+内边距+边框+外边距来决定的. 关于内边距padding,内边距呈现了元素的背景,其设置值是不可以为负的. 而对于外边距margin,默认为透明,设置值可以为 ...

  7. JavaScript弹出层

    1.这个弹出层就是一个DIV 2.看需要什么效果 2.1.如果是仅仅需要弹出层,而背后的网页同样可以点击,那么只需要一个DIV即可,效果如图: 2.2.需要一层透明背景,而后面的网页只能看不能点,效果 ...

  8. Hosts文件说明

    Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Host ...

  9. AngularJS的基础知识

    一.AngularJS指令与表达式 [AngularJS常用指令]1.ng-app:声明Angular所管辖的区域,一般写在body或HTML上,原则上一个页面只有一个.2.ng-model:把元素值 ...

  10. MSSqlServer 数据库降级及数据转移

    --MSSqlServer数据库降级及数据转移--MS SQL SERVER高版本数据库(Database_A)恢复数据到低版本数据库(Database_B)中--1.数据库结构对象(包含表.视图.函 ...