《A First Course in Abstract Algebra with Applications》-chaper1-数论-关于素数
由于笔者在别的专栏多次介绍过数论,这里在《抽象代数基础教程》的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”。
首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法。
看这样几个数学现实:

经过辛苦枯燥的计算,对于命题1,n最小的反例是41;对于命题2,n最小的反例是12055735790331359447442538767,数量级是10的二十八次方。
也就会出现这样一个事实:我们根据经验(我们这里想数学归纳法和自然归纳法混为一谈),判断每天太阳都是从东方升起的,在航空航天技术没有发展起来,这个命题我们无从证明,只能通过每天的经验来进行归纳总结,地球的年龄的100亿年,大约是一个10的12次方的数量级,也就是说,假设一个人从地球诞生开始计算命题2,以每天2个数据的速度,到现在他掌握的证据比太阳从东方升起的证据还要多,但是,这个命题依然是错误的。因此归纳法或者数学归纳法并不适用一切情况,但这并不影响其在所有证明方法中的重要作用。

这个命题的证明通过最小整数定理能够很容易看到,这些看起来似乎无关紧要而且显然的公理、命题其实有着重要的作用。

这个命题将为素数分解定理(唯一分解定理)的引出奠定基础.

《A First Course in Abstract Algebra with Applications》-chaper1-数论-关于素数的更多相关文章
- 《A First Course in Abstract Algebra with Applications》-chaper1-数论
由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...
- 《A First Course in Abstract Algebra with Applications》-chaper1-数论-棣莫弗定理
定理1.24 (棣莫弗定理) 对每个实数x和每个正整数n有 基于棣莫弗定理的推论如下:
- In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in
https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...
- 线性代数 -- Linear Algebra with Applications
@.如果线性方程组无解,则称该方程组是不相容的(inconsistent). @.如果线性方程组至少存在一个解,则称该方程组是相容的(consistent). @.等价方程组(equivalent s ...
- Abstract Algebra chapter 7
7.7:Encrypt each of the following RSA messages x so that x is divided into blocks of integers of len ...
- Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]
最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...
- 数学类杂志SCI2013-2014影响因子
ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF 2013-20 ...
- Mathematics for Computer Graphics
Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...
- 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书
1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...
随机推荐
- LVS+Keepalive+Nginx实现负载均衡
本文参考:http://blog.csdn.net/yinwenjie/article/details/47211551 简单粗暴写一下,做备忘,刚刚搭好没做优化呢,后期补充 一.机器准备 LVS-M ...
- Thunder团队第二周 - Scrum会议4
Scrum会议4 小组名称:Thunder 项目名称:爱阅app Scrum Master:邹双黛 工作照片: 宋雨同学在拍照,所以不再照片中. 参会成员: 王航:http://www.cnblogs ...
- win7 个人电脑 IIS7服务器(web服务器) 同一局域网下均可访问本机网页
建立web服务器: 1.控制面板-->程序-->打开或关闭windows功能-->internet信息服务全部打钩,确定即可. 访问网页: 1.C:\inetpub\wwwroot\ ...
- OSG配置失败解决方案
这连续三天都在台式机上配置OSG,总是报各种各样的错. 后来换到笔记本上配置,结果一次性就配置成功了.笔记本和台式机都是WIN10系统,都是VS2013.或许有时候出错就可以换台电脑或者重装系统试试. ...
- Perfmon - 脚本自动监控
PerfMon-Windows性能监视器是个好东西,可以辅助我们分析发生问题时间段服务器资源占用情况,但是部署性能计数器确实一个相当麻烦的事情,往往这种枯燥的事别人还做不了,只能由我们这些希望获取到P ...
- MVC 枚举 转 SelectListItem
ViewBag.userlevel = new SelectList(Enum.GetNames(typeof(AdminLevels)),"", "", te ...
- 2011 Multi-University Training Contest 7 - Host by ECNU
AC: F I. rank 40/88. 开场看了F发现是个简单的DP,随便写了一下WA,,,发现把样例倒着输就过不了了...原来是忘了最后的时候开始上课的话可能上不了多久... 想到一个简洁的状态方 ...
- python深浅copy-转自EVA的博客
感谢Eva_J, http://www.cnblogs.com/Eva-J/p/5534037.html,新手上路,转载纯为自己学习. 初学编程的小伙伴都会对于深浅拷贝的用法有些疑问,今天我们就结合p ...
- What’s That NetScaler Reset Packet?
What’s That NetScaler Reset Packet? https://www.citrix.com/blogs/2014/05/20/whats-that-netscaler-res ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...