由于笔者在别的专栏多次介绍过数论,这里在《抽象代数基础教程》的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”。

首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法。

看这样几个数学现实:

经过辛苦枯燥的计算,对于命题1,n最小的反例是41;对于命题2,n最小的反例是12055735790331359447442538767,数量级是10的二十八次方。

也就会出现这样一个事实:我们根据经验(我们这里想数学归纳法和自然归纳法混为一谈),判断每天太阳都是从东方升起的,在航空航天技术没有发展起来,这个命题我们无从证明,只能通过每天的经验来进行归纳总结,地球的年龄的100亿年,大约是一个10的12次方的数量级,也就是说,假设一个人从地球诞生开始计算命题2,以每天2个数据的速度,到现在他掌握的证据比太阳从东方升起的证据还要多,但是,这个命题依然是错误的。因此归纳法或者数学归纳法并不适用一切情况,但这并不影响其在所有证明方法中的重要作用。

这个命题的证明通过最小整数定理能够很容易看到,这些看起来似乎无关紧要而且显然的公理、命题其实有着重要的作用。

这个命题将为素数分解定理(唯一分解定理)的引出奠定基础.

《A First Course in Abstract Algebra with Applications》-chaper1-数论-关于素数的更多相关文章

  1. 《A First Course in Abstract Algebra with Applications》-chaper1-数论

    由于笔者在别的专栏多次介绍过数论,这里在<抽象代数基础教程>的专栏下,对于chaper1数论这一章节介绍的方式不那么“入门”. 首先来介绍一个代数中常用也是非常重要的证明方法:数学归纳法. ...

  2. 《A First Course in Abstract Algebra with Applications》-chaper1-数论-棣莫弗定理

    定理1.24 (棣莫弗定理) 对每个实数x和每个正整数n有 基于棣莫弗定理的推论如下:

  3. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in

    https://en.wikipedia.org/wiki/Congruence_relation In abstract algebra, a congruence relation (or sim ...

  4. 线性代数 -- Linear Algebra with Applications

    @.如果线性方程组无解,则称该方程组是不相容的(inconsistent). @.如果线性方程组至少存在一个解,则称该方程组是相容的(consistent). @.等价方程组(equivalent s ...

  5. Abstract Algebra chapter 7

    7.7:Encrypt each of the following RSA messages x so that x is divided into blocks of integers of len ...

  6. Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]

    最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...

  7. 数学类杂志SCI2013-2014影响因子

    ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF        2013-20 ...

  8. Mathematics for Computer Graphics

    Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...

  9. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

随机推荐

  1. JQuery中each方法实现

    each()函数是基本上所有的框架都提供了的一个工具类函数,通过它,你可以遍历对象.数组的属性值并进行处理. jQuery和jQuery对象都实现了该方法,对于jQuery对象,只是把each方法简单 ...

  2. Android 网络编程 API笔记 - java.net 包相关 接口 api

    Android 网络编程相关的包 : 9 包, 20 接口, 103 类, 6 枚举, 14异常; -- Java包 : java.net 包 (6接口, 34类, 2枚举, 12异常); -- An ...

  3. Zigbee安全基础篇Part.1

    原文地址: https://www.4hou.com/wireless/14211.html 导语:ZigBee是一种开源无线技术,用于低功耗嵌入式设备(无线电系统).本文探讨了ZigBee协议的可用 ...

  4. 【.NET】- Task.Run 和 Task.Factory.StartNew 区别

    Task.Run 是在 dotnet framework 4.5 之后才可以使用, Task.Factory.StartNew 可以使用比 Task.Run 更多的参数,可以做到更多的定制. 可以认为 ...

  5. LoadRunner数据库监控指标

    SQL Server 注:以下指标取自SQL Server自身提供的性能计数器. 指标名称 指标描述 指标范围 指标单位 1.SQL Server中访问方法(Access Methods)对象包含的性 ...

  6. Tomcat 7优化配置

    Tomcat 的优化不像其它软件那样,简简单单的修改几个参数就可以了,它的优化主要有三方面,分为系统优化,Tomcat 本身的优化,Java 虚拟机(JVM)调优.系统优化就不在介绍了,接下来就详细的 ...

  7. 第50天:scrollTo小火箭返回顶部

    scrollTo(x,y)//可把内容滚动到指定的坐标scrollTo(xpos,ypos)//x,y值必需 1.固定导航栏 <!DOCTYPE html> <html lang=& ...

  8. Oracle触发器实现监控某表的CRUD操作

    前提:请用sys用户dba权限登录 1.创建一个表来存储操作日志 create table trig_sql( LT DATE not null primary key, SID NUMBER, SE ...

  9. iOS-UI控件概述

    IBAction和IBOutlet,UIView 1 @interface ViewController : UIViewController 2 3 @property(nonatomic, wea ...

  10. BZOJ3670 & 洛谷2375 & UOJ5:[NOI2014]动物园——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3670 https://www.luogu.org/problemnew/show/P2375#su ...