Marriage Match II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4021    Accepted Submission(s): 1309

Problem Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the game of playing house we used to play when we are kids. What a happy time as so many friends playing together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids. 
Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend. 
Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on.
Now, here is the question for you, how many rounds can these 2n kids totally play this game?
 
Input
There are several test cases. First is a integer T, means the number of test cases. 
Each test case starts with three integer n, m and f in a line (3<=n<=100,0<m<n*n,0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other. 
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 
Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 
Sample Input
1
4 5 2
1 1
2 3
3 2
4 2
4 4 
1 4
2 3
 
Sample Output
2
 
Author
starvae
 
Source
 题意:
有n个女生n个男生女生可以和她喜欢的男生配对也可以和她的朋友喜欢的男生配对,当所有的人都配对了时游戏结束,要求每一轮游戏中互相已经配对的两个人以后就不能再配对了问可以进行多少轮游戏。
输入t组数据
输入n,m,f,对人,m个喜欢关系,f个朋友关系
输入m行a b 表示女生a喜欢男生b
输入f行a b 表示女生a和女生b是朋友
代码:
//并查集处理配对关系,然后二分轮数,源点连向女生容量为轮数(每人玩这些次),女生连向可以配对的男生,
//容量为1(只能配对一次),男生连向汇点容量也是轮数。看最大流是否等于n*轮数。
//今下午脑子坏掉了,二分写挫了wa到死。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
int mp[maxn][maxn],fat[maxn];
int find(int x){
return fat[x]==x?x:fat[x]=find(fat[x]);
}
void connect(int x,int y){
int xx=find(x),yy=find(y);
if(xx!=yy) fat[yy]=xx;
}
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
bool solve(int n,int mid){
dc.init(*n+);
for(int i=;i<=n;i++){
dc.Addedge(,i,mid);
for(int j=n+;j<=*n;j++)if(mp[i][j])
dc.Addedge(i,j,);
dc.Addedge(i+n,*n+,mid);
}
return n*mid==dc.Maxflow(,*n+);
}
int main()
{
int t,n,m,f;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&f);
int a,b;
memset(mp,,sizeof(mp));
for(int i=;i<=*n;i++) fat[i]=i;
for(int i=;i<=m;i++){
scanf("%d%d",&a,&b);
mp[a][b+n]=;
}
for(int i=;i<=f;i++){
scanf("%d%d",&a,&b);
connect(a,b);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(find(i)==find(j))
for(int k=n+;k<=*n;k++)
mp[i][k]=mp[j][k]=(mp[i][k]||mp[j][k]);
}
}
int l=,r=n,mid,ans=;
while(l<=r){
mid=(l+r)/;
if(solve(n,mid)){
ans=mid;
l=mid+;
}
else r=mid-;
}
printf("%d\n",ans);
}
return ;
}

HDU 3081 最大流+二分的更多相关文章

  1. HDU 3081 最大流+并查集

    题意:有n个男生和n个女生,玩结婚游戏,由女生选择男生:女生可以选择不会和她吵架的男生以及不会和她闺蜜吵架的男生,闺蜜的闺蜜也是闺蜜.问你最多可以进行多少轮,每一轮每个女生只能选择一个之前她没选过的男 ...

  2. hdu 3228 (最大流+二分)

    题意:一共有N个城市,一些城市里有金矿,一些城市里有仓库,金矿和仓库都有一个容量,有M条边,每条边是双向的,有一个权值,求将所有金矿里的储量都运送到仓库中,所需要经过的道路中,使最大的权值最小 思路: ...

  3. HDU 3277 最大流+二分

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  5. HDU 3081 Marriage Match II(二分法+最大流量)

    HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...

  6. HDU 3081 Marriage Match II (二分图,并查集)

    HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...

  7. HDU 1532 最大流入门

    1.HDU 1532 最大流入门,n个n条边,求第1点到第m点的最大流.只用EK做了一下. #include<bits/stdc++.h> using namespace std; #pr ...

  8. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  9. hdu 3081(二分+并查集+最大流||二分图匹配)

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. (转)GEM -次表面散射的实时近似

    次表面散射(Subsurface Scattering),简称SSS,或3S,是光射入非金属材质后在内部发生散射, 最后射出物体并进入视野中产生的现象, 即光从表面进入物体经过内部散射,然后又通过物体 ...

  2. JavaScript 常用控制流程代码范例

    if-else 的用法 var a = 33 if (a == 1){ console.log ('a等于1') } else if (a==2) { console.log ('a等于2') } e ...

  3. vim常用命令—撤销与反撤销

    命令模式下(即按ESC后的模式) u 撤销 Ctrl r (组合键) 反撤销<后悔撤销>

  4. 2018Java研发实习内推

    作者:sdu王镜鑫链接:https://www.nowcoder.com/discuss/74573?type=0&order=4&pos=7&page=1来源:牛客网 本人某 ...

  5. 上层应用与wpa_supplicant,wpa_supplicant与kernel 相关socket创建交互分析

    单独拿出来,分析以下上层应用与wpa_supplicant   wpa_supplicant与kernel 的socket交互. 关联上层应用与wpa_supplicant的socket的创建.连接流 ...

  6. 互评Alpha版本——Thunder团队

    基于NABCD评论作品 Hello World! :http://www.cnblogs.com/120626fj/p/7807544.html 欢迎来怼 :http://www.cnblogs.co ...

  7. P4语法(2) Parser

    这里参考学习了: P4语言规范 P4台湾社群 Parser 关于parser 在P4程序中,有着大量的首部(header)和首部实例,但每次只有部分首部实例会对数据包进行操作,而parser会用于生成 ...

  8. java — 垃圾回收

    1. 垃圾回收的意义 在java中,当没有对象指向原先分配给某个对象的内存的时候,这片内存就变成了垃圾,JVM的一个系统级线程就会自动释放这个内存块,垃圾回收意味着程序不再需要的对象是“无用的信息”, ...

  9. C/S结构

    C/S结构 编辑 同义词 C/S架构一般指C/S结构 C/S 结构,即大家熟知的客户机和服务器结构.它是软件系统体系结构,通过它可以充分利用两端硬件环境的优势,将任务合理分配到Client端和Serv ...

  10. 如何在flink中传递参数

    众所周知,flink作为流计算引擎,处理源源不断的数据是其本意,但是在处理数据的过程中,往往可能需要一些参数的传递,那么有哪些方法进行参数的传递?在什么时候使用?这里尝试进行简单的总结. 使用conf ...