从前一个和谐的班级,所有人都是搞OI的。有 \(n\) 个是男生,有 \(0\) 个是女生。男生编号分别为 \(1,…,n\) 。

现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽。每个人至多属于一个小组。

有若干个这样的条件:第 \(v\) 个男生和第 \(u\) 个男生愿意组成小组。

请问这个班级里最多产生多少个小组?

输入格式

第一行两个正整数,\(n,m\) 。保证 \(n≥2\) 。

接下来 \(m\) 行,每行两个整数 \(v,u\) 表示第 \(v\) 个男生和第 \(u\) 个男生愿意组成小组。保证 \(1≤v,u≤n\) ,保证 \(v≠u\) ,保证同一个条件不会出现两次。

输出格式

第一行一个整数,表示最多产生多少个小组。

接下来一行 \(n\) 个整数,描述一组最优方案。第 \(v\) 个整数表示 \(v\) 号男生所在小组的另一个男生的编号。如果 \(v\) 号男生没有小组请输出 \(0\) 。

样例一

input

10 20
9 2
7 6
10 8
3 9
1 10
7 1
10 9
8 6
8 2
8 1
3 1
7 5
4 7
5 9
7 8
10 4
9 1
4 8
6 3
2 5

output

5
9 5 6 10 2 3 8 7 1 4

样例二

input

5 4
1 5
4 2
2 1
4 3

output

2
2 1 4 3 0

限制与约定

\(1≤n≤500\) ,\(1≤m≤124750\) 。

时间限制:\(1s\)

空间限制:\(256MB\)

题解

带花树模板题,现在就是背代码。。。

与二分图一样找增广路,如果找到奇交替链,那么返回 \(1\)

如果期望匹配的点已经被匹配了,那么像匈牙利那样,看这个点匹配的那个点能不能再找一个,直接加入队列搜就好了

如果找到奇环,那么就缩花了,暴力求 \(lca\) ,然后改 \(fa\) 数组就行

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=500+10,MAXM=130000+10,inf=0x3f3f3f3f;
int n,m,e,fa[MAXN],beg[MAXN],nex[MAXM<<1],to[MAXM<<1],vis[MAXN],level[MAXN],clk,link[MAXN],pre[MAXN];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline int LCA(int u,int v)
{
for(++clk;;std::swap(u,v))
if(u)
{
u=found(u);
if(level[u]==clk)return u;
level[u]=clk,u=pre[link[u]];
}
}
inline void blossom(int u,int v,int lca)
{
while(found(u)!=lca)
{
pre[u]=v,v=link[u];
if(vis[v]==2)vis[v]=1,q.push(v);
if(found(u)==u)fa[u]=lca;
if(found(v)==v)fa[v]=lca;
u=pre[v];
}
}
inline int bfs(int s)
{
for(register int i=1;i<=n;++i)fa[i]=i;
memset(vis,0,sizeof(vis));
memset(pre,0,sizeof(pre));
while(!q.empty())q.pop();
vis[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
{
if(found(x)==found(to[i])||vis[to[i]]==2)continue;
if(!vis[to[i]])
{
vis[to[i]]=2;
pre[to[i]]=x;
if(!link[to[i]])
{
for(register int p=to[i],las;p;p=las)las=link[pre[p]],link[p]=pre[p],link[pre[p]]=p;
return 1;
}
else vis[link[to[i]]]=1,q.push(link[to[i]]);
}
else
{
int lca=LCA(x,to[i]);
blossom(x,to[i],lca);blossom(to[i],x,lca);
}
}
}
return 0;
}
int main()
{
static int ans=0;
read(n);read(m);
for(register int i=1;i<=m;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
for(register int i=1;i<=n;++i)
if(!link[i])ans+=bfs(i);
write(ans,'\n');
for(register int i=1;i<=n;++i)write(link[i],' ');
puts("");
return 0;
}

【刷题】UOJ #79 一般图最大匹配的更多相关文章

  1. UOJ #79 一般图最大匹配 带花树

    http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利 ...

  2. UOJ #79. 一般图最大匹配

    板子: #include<iostream> #include<cstdio> #include<algorithm> #include<vector> ...

  3. uoj#79. 一般图最大匹配(带花树)

    传送门 带花树 不加证明的说一下过程好了:每次从一个未匹配点\(S\)出发bfs,设\(S\)为\(1\)类点,如果当前点\(v\)在本次bfs中未经过,分为以下两种情况 1.\(v\)是未匹配点,那 ...

  4. 【UOJ】#79. 一般图最大匹配

    题解 板子!我相信其实没人来看我的板子!但是为了防止我忘记,我还是要写点什么 我们考虑二分图,为什么二分图就能那么轻松地写出匹配的代码呢?因为匹配只会发生在黑点和白点之间,我们找寻增广路,必然是一黑一 ...

  5. 【UOJ#79】一般图最大匹配(带花树)

    [UOJ#79]一般图最大匹配(带花树) 题面 UOJ 题解 带花树模板题 关于带花树的详细内容 #include<iostream> #include<cstdio> #in ...

  6. LeetCode刷题专栏第一篇--思维导图&时间安排

    昨天是元宵节,过完元宵节相当于这个年正式过完了.不知道大家有没有投入继续投入紧张的学习工作中.年前我想开一个Leetcode刷题专栏,于是发了一个投票想了解大家的需求征集意见.投票于2019年2月1日 ...

  7. LeetCode刷题总结-排序、并查集和图篇

    本文介绍LeetCode上有关排序.并查集和图的算法题,推荐刷题总数为15道.具体考点分析如下图: 一.排序 1.数组问题 题号:164. 最大间距,难度困难 题号:324. 摆动排序 II,难度中等 ...

  8. C#LeetCode刷题-图

    图篇 # 题名 刷题 通过率 难度 133 克隆图   18.7% 中等 207 课程表   40.0% 中等 210 课程表 II   40.0% 中等 310 最小高度树   29.5% 中等 3 ...

  9. 【刷题记录】BZOJ-USACO

    接下来要滚去bzoj刷usaco的题目辣=v=在博客记录一下刷题情况,以及存一存代码咯.加油! 1.[bzoj1597][Usaco2008 Mar]土地购买 #include<cstdio&g ...

随机推荐

  1. 使用element-ui 的table 渲染数据遇到的问题

    通常我们使用一个table 来渲染服务的返回来的数据时,数据结构一般都是按row 来返回的,并且表头也是固定的 但是如果接口返回的数据结构不是我们想要的,表头也不确定时,我们该如何解析数据,将数据进行 ...

  2. 05-JVM对象探秘

    一.对象的内存布局         以Hotspot虚拟机为例,对象在内存中的结构可以分为三部分:对象头(header).实例数据(instance data).对齐填充(padding). 1.1. ...

  3. 会声会影X10x9x8最新教程

    会声会影X10x9x8最新最全教程,全部都是干货,包含素材的,下载地址:百度网盘, https://pan.baidu.com/s/1AyVS-C_VcTEz_ir70u08xQ 以下为部分内容截图: ...

  4. 浅谈如何提高自动化测试的稳定性和可维护性 (pytest&allure)

    装饰器与出错重试机制 谈到稳定性,不得不说的就是“出错重试”机制了,在自动化测试中,由于环境一般都是测试环境,经常会有各种各种的抽风情况影响测试结果,这样就为测试的稳定性带来了挑战,毕竟谁也不想自己的 ...

  5. artDialog使用说明(弹窗API)

    Js代码 2. 传入HTMLElement    备注:1.元素不是复制而是完整移动到对话框中,所以原有的事件与属性都将会保留 2.如果隐藏元素被传入到对话框,会设置display:block属性显示 ...

  6. FU-A方式分包

    当 NALU 的长度超过 MTU 时, 就必须对 NALU 单元进行分片封包. 也称为 Fragmentation Units (FUs).  0 1  2 3 0 1 2 3 4 5 6 7 8 9 ...

  7. <cassert>

    文件名:  <cassert> (assert.h) 这是一个C语言的诊断库,assert.h文件中定义了一个可作为标准调试工具的宏函数: assert ; 下面介绍这个宏函数:asser ...

  8. JVM--Java类加载机制

    一.什么是类的加载 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其存放在运行时数据区的方法区内,然后在java堆区创建一个java.lang.Class对象,用来封装类在方法区内 ...

  9. httpd 2.2.15 添加流媒体模块

    项目中使用的一直都是 httpd  2.2.15  用于播放视频资源,近期有个新产品上线发现快进视频会出现卡顿情况,因此添加了流媒体模块.(怀疑是新产品中的播放器进行了更改) 原文:http://li ...

  10. Thunder团队第三周 - Scrum会议7

    Scrum会议7 小组名称:Thunder 项目名称:i阅app Scrum Master:胡佑蓉 工作照片: 邹双黛在照相,所以图片中没有该同学. 参会成员: 王航:http://www.cnblo ...