题目描述

给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小

输入

第一行给出数字N,代表有N个数 下面一行给出N个数

输出

S的最小值

样例输入

2
4059 -1782

样例输出

99


题解

扩展裴蜀定理

裴蜀定理:二元一次不定方程 $ax+by=c$ 存在整数解的充分必要条件是 $\gcd(a,b)|c$。

扩展裴蜀定理:改成n元一次不定方程,结论依然成立。

证明: $a_1x_1+a_2x_2$ 的取值范围为 $k·\gcd(a_1,a_2)$ ,相当于 $\gcd(a_1,a_2)$ 为新的系数, $k$ 为新的未知数,相当于合并了两个未知数。这样合并到低就是 $\gcd(a_1,a_2,...,a_n)x$,因此有整数解的充要条件是 $\gcd(a_1,a_2,...,a_n)|c$。

因此 $S$ 的取值集合就是 $\gcd(a_1,a_2,...,a_n)$ 的倍数,最小的正整数 $S$ 就是 $\gcd(a_1,a_2,...,a_n)$

#include <cstdio>
#include <algorithm>
using namespace std;
int main()
{
int n , x , ans = 0;
scanf("%d" , &n);
while(n -- ) scanf("%d" , &x) , ans = __gcd(ans , abs(x));
printf("%d\n" , ans);
return 0;
}

【bzoj1441】Min 扩展裴蜀定理的更多相关文章

  1. 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...

  2. 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...

  3. 【BZOJ1441】Min 拓展裴蜀定理

    [BZOJ1441]Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...

  4. [BZOJ1441&BZOJ2257&BZOJ2299]裴蜀定理

    裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给 ...

  5. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  6. BZOJ 1441: Min(裴蜀定理)

    BZOJ 1441:Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...

  7. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

  8. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  9. 【初等数论】裴蜀定理&扩展欧几里得算法

    裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a ...

随机推荐

  1. MySQL入门第二天——记录操作与连接查询

    常见SQL语法,请参见w3school:http://www.w3school.com.cn/sql/sql_distinct.asp 易百教程:http://www.yiibai.com/sql/f ...

  2. 成都Uber优步司机奖励政策(1月29日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. [python]PyCharm安装与激活

    一.安装 1.去官网下载安装包(http://www.jetbrains.com/pycharm/download/#section=windows) 2.下载完成之后双击即可点击安装,按照自己需求选 ...

  4. 5 属性 property

    1.属性  property 调用私有属性通过实例方法调用.达到这种效果 #property的作用:相当于把方法进行了封装, 开发者在对属性设置数据的时候更方便 class Dog(object): ...

  5. Java:break和continue关键字的作用

    二者的作用和区别 1. break:直接跳出当前循环体(while.for.do while)或程序块(switch).其中switch case执行时,一定会先进行匹配,匹配成功返回当前case的值 ...

  6. Habse中Rowkey的设计原则——通俗易懂篇

    Hbase的Rowkey设计原则 一. Hbase介绍 HBase -> Hadoop Database,HBase是Apache的Hadoop项目的子项目.HBase不同于一般的关系数据库,它 ...

  7. Oracle锁表处理

    最近系统连续出现好几次锁表,昨晚又发生一次锁表,11点钟跑到客户现场,进过跟踪发现导致这次锁表的机器和上一次是同一台,花了近半小时解锁.之后到科室找到那台机器看看情况,发现那台机器速度超慢,保存一份病 ...

  8. Java小记(1)

    return 关键字 package mytest; public class Test4 { public static void main(String[] args) { // TODO Aut ...

  9. <cassert>

    文件名:  <cassert> (assert.h) 这是一个C语言的诊断库,assert.h文件中定义了一个可作为标准调试工具的宏函数: assert ; 下面介绍这个宏函数:asser ...

  10. Java开发工程师(Web方向) - 03.数据库开发 - 第3章.SQL注入与防范

    第3章--SQL注入与防范 SQL注入与防范 经常遇到的问题:数据安全问题,尤其是sql注入导致的数据库的安全漏洞 国内著名漏洞曝光平台:WooYun.org 数据库泄露的风险:用户信息.交易信息的泄 ...