【bzoj1441】Min 扩展裴蜀定理
题目描述
给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小
输入
第一行给出数字N,代表有N个数 下面一行给出N个数
输出
S的最小值
样例输入
2
4059 -1782
样例输出
99
题解
扩展裴蜀定理
裴蜀定理:二元一次不定方程 $ax+by=c$ 存在整数解的充分必要条件是 $\gcd(a,b)|c$。
扩展裴蜀定理:改成n元一次不定方程,结论依然成立。
证明: $a_1x_1+a_2x_2$ 的取值范围为 $k·\gcd(a_1,a_2)$ ,相当于 $\gcd(a_1,a_2)$ 为新的系数, $k$ 为新的未知数,相当于合并了两个未知数。这样合并到低就是 $\gcd(a_1,a_2,...,a_n)x$,因此有整数解的充要条件是 $\gcd(a_1,a_2,...,a_n)|c$。
因此 $S$ 的取值集合就是 $\gcd(a_1,a_2,...,a_n)$ 的倍数,最小的正整数 $S$ 就是 $\gcd(a_1,a_2,...,a_n)$
#include <cstdio>
#include <algorithm>
using namespace std;
int main()
{
int n , x , ans = 0;
scanf("%d" , &n);
while(n -- ) scanf("%d" , &x) , ans = __gcd(ans , abs(x));
printf("%d\n" , ans);
return 0;
}
【bzoj1441】Min 扩展裴蜀定理的更多相关文章
- 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- 【BZOJ1441】Min 拓展裴蜀定理
[BZOJ1441]Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...
- [BZOJ1441&BZOJ2257&BZOJ2299]裴蜀定理
裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给 ...
- 【BZOJ】1441: Min(裴蜀定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...
- BZOJ 1441: Min(裴蜀定理)
BZOJ 1441:Min Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数 ...
- 【BZOJ-1441】Min 裴蜀定理 + 最大公约数
1441: Min Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 471 Solved: 314[Submit][Status][Discuss] De ...
- 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...
- 【初等数论】裴蜀定理&扩展欧几里得算法
裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a ...
随机推荐
- 怎样才能使用ChipScope 加入被优化掉的信号
在调试过程中常常遇到的一个问题就是,xilinx工具在逻辑综合的过程中,将自己RTL代码中的很多变量都优化掉了,使得调试的抓信号的过程很纠结.以下是解决方法: 1.右键synthesis,在综合选项里 ...
- 北京Uber优步司机奖励政策(12月17日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Android 模拟器 下载、编译及调试
Android 模拟器源码下载 Android 模拟器源码的下载与 Android AOSP 源码库的下载过程类似,可以参考 Google 官方提供的 Android 源码下载文档 来了解这个过程. ...
- C#中创建二维数组,使用[][]和[,]的区别
C#中,我们在创建二维数组的时候,一般使用arr[][]的形式,例如 int[][] aInt = new int[2][]; 但声明二维数组还有一种方法,是使用arr[,]的形式.两者有什么区别呢? ...
- 使用GC 初始化DG(将备份集复制到目标端再初始化)
概述 当前环境中有一个GC节点,一套RAC 11.2.0.4的数据库,一个已经使用GC进行在线初始化好的dg环境,需要模拟在远端使用rman备份集进行初始化DG的操作. 恢复环境 当前环境中 已经 ...
- hdu1045Fire Net(经典dfs)
Fire Net Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- python3基础盲点
数值类型 Python支持四种不同的数值类型,包括int(整数)long(长整数)float(浮点数)complex (复数) python3对整数的大小不做限制 算数运算符 优先级: 逻辑运算符 优 ...
- 各种对list,string操作函数的总结
#encoding=utf-8#reverse,用来反转lista=['aa','bb','cc']a.reverse()print a#['cc', 'bb', 'aa']#不能直接print a. ...
- Objective-C 内存管理和ARC
内存管理 范围: 任何继承了NSObject的对象 对基本数据类型无效 原理: 每个对象内部都保存了一个与之相关联的整数 称为引用计数器 1.计数器的基本操作 当使用alloc new或者copy创建 ...
- Siki_Unity_1-8_使用Unity开发2D游戏_PongGame
Unity 1-8 使用Unity开发2D游戏 PongGame 任务1:演示 http://pan.baidu.com/s/1pKUHsev; up2i 任务2:案例介绍 创建PongGame,注意 ...