题目描述

给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2\neq 0$。答案对 $10^9+7$取模。

输入

第一行一个整数 $n$ 。

接下来 $n$ 行,每行一个整数,这 $n$ 行中的第 $i$ 行,表示 $a_i$ 。

$1\le n\le 211985,1\le a_i\le 233333$

输出

一行一个整数表示答案。

样例输入

4
15
7
3
1

样例输出

11


题解

数论+状压dp

考虑Lucas定理求组合数的过程: ${n\choose m}\mod 2={{n\mod 2}\choose{m\mod 2}}·{{n/2}\choose{m/2}}\mod 2$

相当于 ${n\mod 2}\choose{m\mod 2}$ 是 $n$ 和 $m$ 的二进制最后一位,如果结果不等于0,则每一次递归的 ${n\mod 2}\choose{m\mod 2}$ 都不能等于0。

考虑实际意义,即不能存在二进制某一位,$n$ 的该位为0, $m$ 的该位为1。那么就相当于 $m$ 是 $n$ 的子集。

设 $f[i]$ 表示以数 $i$ 结尾的满足条件的子序列的数目,那么对于数 $j$ ,如果 ${i\choose j}\mod 2\neq 0$(即满足上面的子集性质),且 $j$ 出现的位置在 $i$ 后面 ,那么就可以从 $j$ 更新到 $i$ ,$f[i]+=f[j]+1$。

可以通过枚举子集的技巧 $j=i\ and\ (j-1)$,使得时间复杂度为 $O(3^{\log_2233333})=O(322137234)=O(能过)$

#include <cstdio>
#define mod 1000000007
int p[233334] , f[233334];
int main()
{
int n , i , j , x , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , p[x] = i;
for(i = 1 ; i <= 233333 ; i ++ )
if(p[i])
for(j = i & (i - 1) ; j ; j = i & (j - 1))
if(p[j] > p[i])
f[i] = (f[i] + f[j] + 1) % mod;
for(i = 1 ; i <= 233333 ; i ++ ) ans = (ans + f[i]) % mod;
printf("%d\n" , ans);
return 0;
}

【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp的更多相关文章

  1. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  2. UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)

    题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...

  3. 牛客练习赛18E pocky游戏 状压dp

    正解:状压dp+辅助dp 解题报告: 来还债辣!NOIp之后还是轻松很多了呢,可以一点点儿落实之前欠下的各种东西一点点提升自己!加油鸭! 是个好题,可以积累套路,启发性强,而且很难 哦而且状压它也是个 ...

  4. JZYZOJ 1388 旅游 状压dp

    http://172.20.6.3/Problem_Show.asp?id=1388   求拓扑排序方案数 状压dp,最开始以为是拓扑排序加数论或者搜索,没想到是状压dp,突然气死.jpg: 完全没有 ...

  5. 【bzoj3195】【 [Jxoi2012]奇怪的道路】另类压缩的状压dp好题

    (上不了p站我要死了) 啊啊,其实想清楚了还是挺简单的. Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期 ...

  6. 状压DP之LGTB 与序列

    题目 思路 这道题竟然是状压DP,本人以为是数论,看都没看就去打下一题的暴力了,哭 \(A_i\)<=30,所以我们只需要考虑1-58个数,再往后选的话还不如选1更优,注意,1是可以重复选取的, ...

  7. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  8. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  9. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

随机推荐

  1. 钓鱼 洛谷p1717

    题目描述 话说发源于小朋友精心设计的游戏被电脑组的童鞋们藐杀之后非常不爽,为了表示安慰和鼓励,VIP999决定请他吃一次“年年大丰收”,为了表示诚意,他还决定亲自去钓鱼,但是,因为还要准备2013NO ...

  2. springBoot整合ecache缓存

    EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider. ehcache提供了多种缓存策略,主要分为内存和磁盘两级,所以无需担心 ...

  3. 北京Uber优步司机奖励政策(3月26日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. ORB-SLAM跑通笔记本摄像头

    环境:Ubuntu 14.04 + ROS indigo + ORB-SLAM2 (Thinkpad T460s) 1. 安装ORB-SLAM: Pangolin Pangolin有一些依赖库,按照提 ...

  5. 流式断言器AssertJ介绍

    本文来自网易云社区 作者:范旭斐 大家在使用testng.junit做自动化测试的过程中,经常会用到testng.junit自带的断言器,有时候对一个字符串.日期.列表进行断言很麻烦,需要借助到jdk ...

  6. 了解和分析iOS Crash

    WeTest 导读 北京时间凌晨一点,苹果一年一度的发布会如期而至.新机型的发布又会让适配相关的同学忙上一阵子啦,并且iOS Crash的问题始终伴随着移动开发者.本文将从三个阶段,由浅入深的介绍如何 ...

  7. Ubuntu16.04比较好的一系列软件安装介绍

    https://blog.csdn.net/Gerald_Jones/article/details/80784976

  8. leetcode-零钱兑换—int溢出

     零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: c ...

  9. ionic 组件学习

    利用css列表多选框: <div class="{{Conceal}}" > <ion-checkbox color="secondary" ...

  10. mysql数据库常用操作

    目前最流行的数据库: oracle.mysql.sqlserver.db2.sqline --:单行注释 #:也是单行注释 /* 注释内容*/:多行注释 mysql -uroot -p密码:登录mys ...