【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述
给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2\neq 0$。答案对 $10^9+7$取模。
输入
第一行一个整数 $n$ 。
接下来 $n$ 行,每行一个整数,这 $n$ 行中的第 $i$ 行,表示 $a_i$ 。
$1\le n\le 211985,1\le a_i\le 233333$
输出
一行一个整数表示答案。
样例输入
4
15
7
3
1
样例输出
11
题解
数论+状压dp
考虑Lucas定理求组合数的过程: ${n\choose m}\mod 2={{n\mod 2}\choose{m\mod 2}}·{{n/2}\choose{m/2}}\mod 2$
相当于 ${n\mod 2}\choose{m\mod 2}$ 是 $n$ 和 $m$ 的二进制最后一位,如果结果不等于0,则每一次递归的 ${n\mod 2}\choose{m\mod 2}$ 都不能等于0。
考虑实际意义,即不能存在二进制某一位,$n$ 的该位为0, $m$ 的该位为1。那么就相当于 $m$ 是 $n$ 的子集。
设 $f[i]$ 表示以数 $i$ 结尾的满足条件的子序列的数目,那么对于数 $j$ ,如果 ${i\choose j}\mod 2\neq 0$(即满足上面的子集性质),且 $j$ 出现的位置在 $i$ 后面 ,那么就可以从 $j$ 更新到 $i$ ,$f[i]+=f[j]+1$。
可以通过枚举子集的技巧 $j=i\ and\ (j-1)$,使得时间复杂度为 $O(3^{\log_2233333})=O(322137234)=O(能过)$
#include <cstdio>
#define mod 1000000007
int p[233334] , f[233334];
int main()
{
int n , i , j , x , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , p[x] = i;
for(i = 1 ; i <= 233333 ; i ++ )
if(p[i])
for(j = i & (i - 1) ; j ; j = i & (j - 1))
if(p[j] > p[i])
f[i] = (f[i] + f[j] + 1) % mod;
for(i = 1 ; i <= 233333 ; i ++ ) ans = (ans + f[i]) % mod;
printf("%d\n" , ans);
return 0;
}
【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp的更多相关文章
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)
题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...
- 牛客练习赛18E pocky游戏 状压dp
正解:状压dp+辅助dp 解题报告: 来还债辣!NOIp之后还是轻松很多了呢,可以一点点儿落实之前欠下的各种东西一点点提升自己!加油鸭! 是个好题,可以积累套路,启发性强,而且很难 哦而且状压它也是个 ...
- JZYZOJ 1388 旅游 状压dp
http://172.20.6.3/Problem_Show.asp?id=1388 求拓扑排序方案数 状压dp,最开始以为是拓扑排序加数论或者搜索,没想到是状压dp,突然气死.jpg: 完全没有 ...
- 【bzoj3195】【 [Jxoi2012]奇怪的道路】另类压缩的状压dp好题
(上不了p站我要死了) 啊啊,其实想清楚了还是挺简单的. Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期 ...
- 状压DP之LGTB 与序列
题目 思路 这道题竟然是状压DP,本人以为是数论,看都没看就去打下一题的暴力了,哭 \(A_i\)<=30,所以我们只需要考虑1-58个数,再往后选的话还不如选1更优,注意,1是可以重复选取的, ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
随机推荐
- 【Hutool】Hutool工具类之String工具——StrUtil
类似的是commons-lang中的StringUtils 空与非空的操作——经典的isBlank/isNotBlank.isEmpty/isNotEmpty isBlank()——是否为空白,空白的 ...
- 20145234黄斐《Java程序设计》第二周学习总结
教材学习内容总结 类型 Java可区分为基本类型(Primitive Type)和类类型(Class Type),其中类类型也叫参考类型(Reference Type). 字节类型,也叫byte类型, ...
- 北京Uber优步司机奖励政策(10月19日~10月25日)
用户组:优步北京人民优步A组(适用于10月19日-10月25日) 滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万 ...
- 杭州优步uber司机第一组奖励政策
-8月9日更新- 优步杭州第一组: 定义为激活时间在2015/6/8之前的车主(以优步后台数据显示为准) 滴滴快车单单2.5倍,注册地址:http://www.udache.com/如何注册Uber司 ...
- LeetCode: 60. Permutation Sequence(Medium)
1. 原题链接 https://leetcode.com/problems/permutation-sequence/description/ 2. 题目要求 给出整数 n和 k ,k代表从1到n的整 ...
- imageNamed和imageWithContextOfFile的区别?哪个性能高
imageNamed性能高 1.用imageNamed的方式加载时,图片使用完毕后缓存到内存中,内存消耗多,加载速度快.即使生成的对象被 autoReleasePool释放了,这份缓存也不释放,如果图 ...
- unity3d 角色头顶信息3D&2D遮挡解决方案(一)
先上效果图,只凭文字描述,脑补应该有些困难- - 如图:有三个角色(我们暂且从左到右叫它们A.B.C),一个2D UI(中间动作选择的框框),一个cube(右边的方块) cube挡住了角色C的头顶信息 ...
- RSA加密通信小结(二)-新版本APP与后台通信交互内容修改方案
注1:本次修改分为两步,首先是内容相关的修改,待其完成之后,再进行加密通信项(粗体字备注)修改. 1.新的提交后台的格式包括:data,token(预留字段,暂时后台不校验),userId(已有的不删 ...
- Objective-C Block数据类型 @protocol关键字
Block数据类型 Block封装了一段代码 可以在任何时候执行 Block可以作为函数参数或者函数的返回值 而其本身又可以带输入参数或返回值 苹果官方建议尽量多用Block 在多线程 异步任务 集合 ...
- caffe Mac 安装
参考了 https://zhuanlan.zhihu.com/p/24853767 安装caffe的依赖项 brew install --fresh -vd snappy leveldb gflags ...