题目大意:给你一个$n(n\leqslant20)$项的数列$A$,设重排后的数列为$A'$,令$pre_p=\sum\limits_{i=1}^pA'_i$,求$max\{pre_i\}$的期望,乘$n!$

题解:令$f_S$为选$S$集合的数,重排后满足$\max\{pre_i\}=\sum\limits_{i=1}^{|S|}S_i$的方案数,$g_S$为选$S$集合数,重排后满足$\max\{pre_i\}\leqslant0$的方案数。发现若数列$B$满足$\sum\limits_{i=1}^{|B|}B_i>0$,那么任意在它前面插入一个数,都满足$f$的条件。若数列$B$满足$\max\{pre_i\}\leqslant0$,在它后面插入一个数后,只要$\sum\limits_{i=1}^{|B|}B_i\leqslant0$,就行了。

答案是$\sum\limits_{S}sum_Sf_Sg_{\bar S}$。

卡点:

C++ Code:

#include <cstdio>
#define maxn 20
#define N (1 << maxn)
const int mod = 998244353;
inline void reduce(int &x) { x += x >> 31 & mod; } int n;
int s[maxn], f[N], g[N], sum[N];
int main() {
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", s + i);
f[1 << i] = 1;
g[1 << i] = s[i] <= 0;
}
const int U = 1 << n, I = U - 1;
for (int i = 1; i < U; ++i) sum[i] = sum[i & i - 1] + s[__builtin_ctz(i)];
g[0] = 1;
for (int i = 0; i < U; ++i) if (__builtin_popcount(i) > 1) {
for (int j = i; j; j &= j - 1) {
int k = __builtin_ctz(j), l = i ^ 1 << k;
if (sum[i] <= 0) reduce(g[i] += g[l] - mod);
if (sum[l] > 0) reduce(f[i] += f[l] - mod);
}
}
for (int i = 0; i < U; ++i) reduce(sum[i] %= mod);
int ans = 0;
for (int i = 1; i < U; ++i) reduce(ans += static_cast<long long> (sum[i]) * f[i] % mod * g[I ^ i] % mod - mod);
printf("%d\n", ans);
return 0;
}

  

[LOJ #6433]「PKUSC2018」最大前缀和的更多相关文章

  1. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

  2. Loj#6433「PKUSC2018」最大前缀和(状态压缩DP)

    题面 Loj 题解 先转化题意,其实这题在乘了\(n!\)以后就变成了全排列中的最大前缀和的和(有点拗口).\(n\leq20\),考虑状压\(DP\) 考虑一个最大前缀和\(\sum\limits_ ...

  3. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  4. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  5. loj 6433 「PKUSC2018」最大前缀和 题解【DP】【枚举】【二进制】【排列组合】

    这是个什么集合DP啊- 想过枚举断点但是不会处理接下来的问题了- 我好菜啊 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做 ...

  6. loj#6433. 「PKUSC2018」最大前缀和(状压dp)

    传送门 今天\(PKUWC\)试机的题 看着边上的大佬们一个个\(A\)穿咱还是不会-- 我们考虑枚举最大前缀和,如果一个前缀\(1\)到\(p\)是最大前缀和,那么\(p\)后面的所有前缀和都要小于 ...

  7. 【LOJ】#6433. 「PKUSC2018」最大前缀和

    题解 神仙的状压啊QAQ 设一个\(f[S]\)表示数字的集合为\(S\)时\(sum[S]\)为前缀最大值的方案数 \(g[S]\)表示数字集合为\(S\)时所有前缀和都小于等于0的方案数 答案就是 ...

  8. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  9. LOJ #6435. 「PKUSC2018」星际穿越(倍增)

    题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...

随机推荐

  1. CentOS 7.2使用源码包编译安装MySQL 5.7.22及一些操作

    CentOS 7.2使用源码包编译安装MySQL 5.7.22及一些操作 2018年07月05日 00:28:38 String峰峰 阅读数:2614   使用yum安装的MySQL一般版本比较旧,但 ...

  2. docker 应用场景

    内容来自知乎.先mark,后续再研究 0.无痛尝试新事物 这应该是最早让我感受到docker的便利性的使用场景了. 以前,如果想尝试新的编程语言/数据库/命令行工具,会先找找apt的源里有没有相应的包 ...

  3. libevent学习六(Connect listeners )

      创建与释放 //backlog需要查询平台说明,在linux2.2以后 backlog就变成了已完成连接但未accept的队列的最大值(原来是处于syn状态的,现在换成sysctl 控制的参数tc ...

  4. 「日常温习」Hungary算法解决二分图相关问题

    前言 二分图的重点在于建模.以下的题目大家可以清晰的看出来这一点.代码相似度很高,但是思路基本上是各不相同. 题目 HDU 1179 Ollivanders: Makers of Fine Wands ...

  5. Selenium基础之--01(将浏览器最大化,设置浏览器固定宽、高,操控浏览器前进、后退)

    1,将浏览器最大化 我们知道调用启动的浏览器不是全屏的,这样不会影响脚本的执行,但是有时候会影响我们"观看"脚本的执行. coding=utf-8 from selenium im ...

  6. Siki_Unity_2-1_API常用方法和类详细讲解(下)

    Unity 2-1 API常用方法和类详细讲解(下) 任务101&102:射线检测 射线origin + direction:射线检测:射线是否碰撞到物体 (物体需要有碰撞器),碰撞物体的信息 ...

  7. 使用Zabbix监控rabbitmq服务

    添加rabbitmq脚本 [root@controller rabbitmq]# cd /etc/zabbix/script/rabbitmq [root@controller rabbitmq]# ...

  8. poj 3468 (区间修改 区间查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions:147133   ...

  9. UVa -1584 Circular Sequence 解题报告 - C语言

    1.题目大意 输入长度为n$(2\le n\le 100)$的环状DNA串,找出该DNA串字典序最小的最小表示. 2.思路 这题特别简单,一一对比不同位置开始的字符串的字典序,更新result. 3. ...

  10. Simple layout

    body { padding: 0; margin: 0; overflow: hidden; }   div { display: block; position: relative; }   .c ...