http://www.blogjava.net/kinkding/archive/2009/05/23/277552.html

————————————————————————————————————————————————

今天在网上看到了一篇关于JAVA图像处理的文章,博主贴出了一个处理类:特点是高品质缩小,具体代码如下:

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException; import javax.imageio.ImageIO; public class ImageScale {     private int width;
    private int height;
    private int scaleWidth;
    double support = (double) 3.0;
    double[] contrib;
    double[] normContrib;
    double[] tmpContrib;
    int startContrib, stopContrib;
    int nDots;
    int nHalfDots;     public BufferedImage imageZoomOut(BufferedImage srcBufferImage, int w, int h, boolean lockScale) {
        width = srcBufferImage.getWidth();
        height = srcBufferImage.getHeight();
        scaleWidth = w;
        if (lockScale) {
            h = w * height / width;
        }         if (DetermineResultSize(w, h) == 1) {
            return srcBufferImage;
        }
        CalContrib();
        BufferedImage pbOut = HorizontalFiltering(srcBufferImage, w);
        BufferedImage pbFinalOut = VerticalFiltering(pbOut, h);
        return pbFinalOut;
    }     /**
     * 决定图像尺寸
     */
    private int DetermineResultSize(int w, int h) {
        double scaleH, scaleV;
        scaleH = (double) w / (double) width;
        scaleV = (double) h / (double) height;
        // 需要判断一下scaleH,scaleV,不做放大操作
        if (scaleH >= 1.0 && scaleV >= 1.0) {
            return 1;
        }
        return 0;     } // end of DetermineResultSize()     private double Lanczos(int i, int inWidth, int outWidth, double Support) {
        double x;         x = (double) i * (double) outWidth / (double) inWidth;         return Math.sin(x * Math.PI) / (x * Math.PI) * Math.sin(x * Math.PI / Support) / (x * Math.PI / Support);     } // end of Lanczos()     //
    // Assumption: same horizontal and vertical scaling factor
    //
    private void CalContrib() {
        nHalfDots = (int) ((double) width * support / (double) scaleWidth);
        nDots = nHalfDots * 2 + 1;
        try {
            contrib = new double[nDots];
            normContrib = new double[nDots];
            tmpContrib = new double[nDots];
        } catch (Exception e) {
            System.out.println("init contrib,normContrib,tmpContrib" + e);
        }         int center = nHalfDots;
        contrib[center] = 1.0;         double weight = 0.0;
        int i = 0;
        for (i = 1; i <= center; i++) {
            contrib[center + i] = Lanczos(i, width, scaleWidth, support);
            weight += contrib[center + i];
        }         for (i = center - 1; i >= 0; i--) {
            contrib[i] = contrib[center * 2 - i];
        }         weight = weight * 2 + 1.0;         for (i = 0; i <= center; i++) {
            normContrib[i] = contrib[i] / weight;
        }         for (i = center + 1; i < nDots; i++) {
            normContrib[i] = normContrib[center * 2 - i];
        }
    } // end of CalContrib()     // 处理边缘
    private void CalTempContrib(int start, int stop) {
        double weight = 0;         int i = 0;
        for (i = start; i <= stop; i++) {
            weight += contrib[i];
        }         for (i = start; i <= stop; i++) {
            tmpContrib[i] = contrib[i] / weight;
        }     } // end of CalTempContrib()     private int GetRedValue(int rgbValue) {
        int temp = rgbValue & 0x00ff0000;
        return temp >> 16;
    }     private int GetGreenValue(int rgbValue) {
        int temp = rgbValue & 0x0000ff00;
        return temp >> 8;
    }     private int GetBlueValue(int rgbValue) {
        return rgbValue & 0x000000ff;
    }     private int ComRGB(int redValue, int greenValue, int blueValue) {         return (redValue << 16) + (greenValue << 8) + blueValue;
    }     // 行水平滤波
    private int HorizontalFilter(BufferedImage bufImg, int startX, int stopX, int start, int stop, int y,
            double[] pContrib) {
        double valueRed = 0.0;
        double valueGreen = 0.0;
        double valueBlue = 0.0;
        int valueRGB = 0;
        int i, j;         for (i = startX, j = start; i <= stopX; i++, j++) {
            valueRGB = bufImg.getRGB(i, y);             valueRed += GetRedValue(valueRGB) * pContrib[j];
            valueGreen += GetGreenValue(valueRGB) * pContrib[j];
            valueBlue += GetBlueValue(valueRGB) * pContrib[j];
        }         valueRGB = ComRGB(Clip((int) valueRed), Clip((int) valueGreen), Clip((int) valueBlue));
        return valueRGB;     } // end of HorizontalFilter()     // 图片水平滤波
    private BufferedImage HorizontalFiltering(BufferedImage bufImage, int iOutW) {
        int dwInW = bufImage.getWidth();
        int dwInH = bufImage.getHeight();
        int value = 0;
        BufferedImage pbOut = new BufferedImage(iOutW, dwInH, BufferedImage.TYPE_INT_RGB);         for (int x = 0; x < iOutW; x++) {             int startX;
            int start;
            int X = (int) (((double) x) * ((double) dwInW) / ((double) iOutW) + 0.5);
            int y = 0;             startX = X - nHalfDots;
            if (startX < 0) {
                startX = 0;
                start = nHalfDots - X;
            } else {
                start = 0;
            }             int stop;
            int stopX = X + nHalfDots;
            if (stopX > (dwInW - 1)) {
                stopX = dwInW - 1;
                stop = nHalfDots + (dwInW - 1 - X);
            } else {
                stop = nHalfDots * 2;
            }             if (start > 0 || stop < nDots - 1) {
                CalTempContrib(start, stop);
                for (y = 0; y < dwInH; y++) {
                    value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, tmpContrib);
                    pbOut.setRGB(x, y, value);
                }
            } else {
                for (y = 0; y < dwInH; y++) {
                    value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, normContrib);
                    pbOut.setRGB(x, y, value);
                }
            }
        }         return pbOut;     } // end of HorizontalFiltering()     private int VerticalFilter(BufferedImage pbInImage, int startY, int stopY, int start, int stop, int x,
            double[] pContrib) {
        double valueRed = 0.0;
        double valueGreen = 0.0;
        double valueBlue = 0.0;
        int valueRGB = 0;
        int i, j;         for (i = startY, j = start; i <= stopY; i++, j++) {
            valueRGB = pbInImage.getRGB(x, i);             valueRed += GetRedValue(valueRGB) * pContrib[j];
            valueGreen += GetGreenValue(valueRGB) * pContrib[j];
            valueBlue += GetBlueValue(valueRGB) * pContrib[j];
        }         valueRGB = ComRGB(Clip((int) valueRed), Clip((int) valueGreen), Clip((int) valueBlue));
        // System.out.println(valueRGB);
        return valueRGB;     } // end of VerticalFilter()     private BufferedImage VerticalFiltering(BufferedImage pbImage, int iOutH) {
        int iW = pbImage.getWidth();
        int iH = pbImage.getHeight();
        int value = 0;
        BufferedImage pbOut = new BufferedImage(iW, iOutH, BufferedImage.TYPE_INT_RGB);         for (int y = 0; y < iOutH; y++) {             int startY;
            int start;
            int Y = (int) (((double) y) * ((double) iH) / ((double) iOutH) + 0.5);             startY = Y - nHalfDots;
            if (startY < 0) {
                startY = 0;
                start = nHalfDots - Y;
            } else {
                start = 0;
            }             int stop;
            int stopY = Y + nHalfDots;
            if (stopY > (int) (iH - 1)) {
                stopY = iH - 1;
                stop = nHalfDots + (iH - 1 - Y);
            } else {
                stop = nHalfDots * 2;
            }             if (start > 0 || stop < nDots - 1) {
                CalTempContrib(start, stop);
                for (int x = 0; x < iW; x++) {
                    value = VerticalFilter(pbImage, startY, stopY, start, stop, x, tmpContrib);
                    pbOut.setRGB(x, y, value);
                }
            } else {
                for (int x = 0; x < iW; x++) {
                    value = VerticalFilter(pbImage, startY, stopY, start, stop, x, normContrib);
                    pbOut.setRGB(x, y, value);
                }
            }         }         return pbOut;     } // end of VerticalFiltering()     int Clip(int x) {
        if (x < 0)
            return 0;
        if (x > 255)
            return 255;
        return x;
    }     public static void main(String[] args) throws IOException {
        ImageScale is = new ImageScale();
        String path = "D:\\My Documents\\My Pictures\\pictrue\\";
        BufferedImage image1 = ImageIO.read(new File(path + "test.jpg"));
        int w = 200, h = 400;
        BufferedImage image2 = is.imageZoomOut(image1, w, h, true);
        FileOutputStream out = new FileOutputStream(path + "test_2.jpg");
        ImageIO.write(image2, "jpeg", out);
    }
}

上面的代码中,本人做了一点小改进:imageZoomOut方法中,添加了一个lockScale参数,如果为true则表明保持纵横比。
程序运行的效果如下:
test.jpg(原图):

test_2.jpg(程序生成的图片):

JAVA图像缩放处理的更多相关文章

  1. 图像缩放_OpenCv

    图像缩放是一种比较简单的图像处理操作,这里给出opencv中的代码, opencv的版本C语言接口 int resize_c() { const char *pstrImageName = " ...

  2. opencv2 矩阵方式 resize图像缩放代码(转载)

    http://blog.sina.com.cn/s/blog_74a459380101r0yx.html opencv2 矩阵方式 resize图像缩放代码(转载) (2014-05-16 09:55 ...

  3. 【美工设计 - Adobe Illustrator】基本设置 (图像显示 | 图像缩放 | 置入导出 | 标尺 | 网格 | 参考线 | 画板)

    作者 : 韩曙亮 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/50232767 一. 基础操作 1. 设置图像显示效果 (1) ...

  4. 图像旋转与图像缩放及Matlab代码实现

    本周的作业是自己通过公式编写图像旋转与缩放的代码.今天先通过调用函数的方法来实现. 图像的旋转: A=imread('2.jpg'); J=imrotate(A, 30); subplot(1,2,1 ...

  5. opencv3 图像处理(一)图像缩放( python与c++ 实现)

    opencv3 图像处理 之 图像缩放( python与c++实现 ) 一. 主要函数介绍 1) 图像大小变换 Resize () 原型: void Resize(const CvArr* src,C ...

  6. 实现基于最近邻内插和双线性内插的图像缩放C++实现

    平时我们写图像处理的代码时,如果需要缩放图片,我们都是直接调用图像库的resize函数来完成图像的缩放.作为一个机器视觉或者图像处理算法的工作者,图像缩放代码的实现应该是必须掌握的.在众多图像缩放算法 ...

  7. 20 个具有惊艳效果的 jQuery 图像缩放插件

    jQuery相对与Flash的魔力已经贯穿整个网络.尽管,Flash层被认为是用于网页设计的首选,然而随着jQuery的出现,以及他的酷似Flash的交互式特效使得网页更加的优雅——Flash开始靠边 ...

  8. opencv学习笔记——图像缩放函数resize

    opencv提供了一种图像缩放函数 功能:实现对输入图像缩放到指定大小 函数原型: void cv::resize ( InputArray src, OutputArray dst, Size ds ...

  9. 邻近双线性插值图像缩放的Python实现

    最近在查找有关图像缩放之类的算法,因工作中需要用到诸如此类的图像处理算法就在网上了解了一下相关算法,以及其原理,并用Python实现,且亲自验证过,在次与大家分享. 声明:本文代码示例针对的是plan ...

随机推荐

  1. CentOS6.8 4.4.43内核 安装PF_RING

    环境: 系统:CentOS 6.8 内核版本:4.4.43 PF_RING版本:6.9.0 编译PF_RING需要内核源码,由于我的机器上只有4.4.43版本的modules和4.4.43的源码,并没 ...

  2. windows Visual Studio 2017 编译 HEVC cmake-3.8.1-win64-x64.msi 下载

    ttps://github.com/OpenHEVC/openHEVC 下载一 直接下载源码(可选)或下载源码包,我这里下载的是源码 打开 Visual Studio () 去 github 找到源码 ...

  3. iPhone销售拉动 鸿海精密第一季度利润增长21%

    据美国<华尔街日报>5月15日消息,苹果公司主要代工厂鸿海精密发布,第一季度利润增长21%.主要得益于iPhone手机销量强劲以及生产效率提升. 这家全球最大的电子产品代工商近一半的收入是 ...

  4. Android_WebView_全屏

    WebView(网络视图)能加载显示网页,能够将其视为一个浏览器. 它使用了WebKit渲染引擎加载显示网页,实现WebView有下面两种不同的方法: 第一种方法的步骤: 1.在要Activity中实 ...

  5. 算法笔记_077:蓝桥杯练习 K好数(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数的数目.例如K = 4, ...

  6. HDU-1090-A+B for Input-Output Practice (II)(骗訪问量的)

    A+B for Input-Output Practice (II) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/327 ...

  7. Executor / Executors / ExecutorService /

    Java SE5的java.util.concurrent包中的执行器(Executor)将为你管理Thread对象,从而简化了并发编程.Executor在客户端和执行任务之间提供了一个间接层,Exe ...

  8. PHP-PHP程序员的技术成长规划(By黑夜路人)

    按照了解的很多PHP/LNMP程序员的发展轨迹,结合个人经验体会,抽象出很多程序员对未来的迷漫,特别对技术学习的盲目和慌乱,简单梳理了这个每个阶段PHP程序员的技术要求,来帮助很多PHP程序做对照设定 ...

  9. SQL数据表插入随机数(转)

    declare @T TABLE (id int identity(1,1),[Name] nvarchar(20), Randnum int) insert @T ([Name]) select ' ...

  10. 基于DDD的现代ASP.NET开发框架--ABP系列之1、ABP总体介绍

    点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之1.ABP总体介绍 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)” ...