题目链接:https://www.luogu.org/problemnew/show/P1351

做了些提高组的题,不得不说虽然NOIP考察的知识点虽然基本上都学过,但是做起题来还是需要动脑子的。

题目质量很高吧,觉得出的很有水平 (除了2017 d1t1

70分:

三层枚举强制到距离为2

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 2 * 1e6 + 10;
const int mod = 10007;
struct edge{
long long from, to, next, len;
}e[maxn<<2];
long long head[maxn], cnt;
long long n, val[maxn], ans, maxx;
void add(long long u, long long v)
{
e[++cnt].from = u;
e[cnt].next = head[u];
e[cnt].to = v;
head[u] = cnt;
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%lld",&n);
for(long long i = 1; i < n; i++)
{
long long u, v;
scanf("%lld%lld",&u,&v);
add(u,v);
add(v,u);
}
for(long long i = 1; i <= n; i++)
scanf("%lld",&val[i]); /*for(long long i = 1; i <= cnt; i++)
{
cout<<i<<endl;
cout<<e[i].from<<" "<<e[i].to<<" "<<e[i].next<<endl;
}
for(long long i = 1; i <= n; i++) cout<<head[i]<<" ";cout<<"qwq"<<endl;*/
for(long long i = 1; i <= n; i++)
{
for(long long j = head[i]; j != -1; j = e[j].next)
{
for(long long k = head[e[j].to]; k != -1; k = e[k].next)
{
if(e[j].from != e[k].to)
{
//cout<<e[j].from<<" "<<e[k].to<<endl;
if(maxx < val[e[j].from] * val[e[k].to])
maxx = val[e[j].from] * val[e[k].to];
ans += val[e[j].from] * val[e[k].to] % mod;
}
}
}
}
cout<<maxx<<" "<<ans%mod;
}

100分:

每次枚举中间节点的所有儿子,再用完全平方公式倒退回去所有的2WiWj

这样做的复杂度为线性,如果强行组合所有方案是O(n^2)的

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 2 * 1e6 + 10;
const int mod = 10007;
struct edge{
long long from, to, next, len;
}e[maxn<<2];
long long head[maxn], cnt;
long long n, val[maxn], ans, maxx, totsq, totsum, fir, sec;
void add(long long u, long long v)
{
e[++cnt].from = u;
e[cnt].next = head[u];
e[cnt].to = v;
head[u] = cnt;
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%lld",&n);
for(long long i = 1; i < n; i++)
{
long long u, v;
scanf("%lld%lld",&u,&v);
add(u,v);
add(v,u);
}
for(long long i = 1; i <= n; i++)
scanf("%lld",&val[i]); for(long long i = 1; i <= n; i++)
{
fir = 0, sec = 0;
long long son1 = 0, son2 = 0;
for(long long j = head[i]; j != -1; j = e[j].next)
{
if(val[e[j].to] > fir)
{
sec = fir;
fir = val[e[j].to];
}
else if(val[e[j].to] > sec)
{
sec = val[e[j].to];
}
son1 = (son1 + val[e[j].to]) % mod;
son2 = (son2 + val[e[j].to] * val[e[j].to]) % mod;
}
if(sec == 0) continue;
if(maxx < fir * sec)
maxx = fir * sec; son1 = son1 * son1 % mod;
ans = (ans + son1 - son2 + 10007)%10007;
}
printf("%lld %lld",maxx, ans);
return 0;
}

【luogu P1351 联合权值】 题解的更多相关文章

  1. Luogu P1351 联合权值 题解

    这是一个不错的树形结构的题,由于本蒟蒻不会推什么神奇的公式其实是懒得推...,所以很愉快的发现其实只需要两个点之间的关系为祖父和儿子.或者是兄弟即可. 然后问题就变得很简单了,只需要做一个正常的DFS ...

  2. 洛谷 P1351 联合权值 题解

    P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条 ...

  3. luogu P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  4. [NOIp2014] luogu P1351 联合权值

    哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi​,每条边的长度均为 111 ...

  5. P1351 联合权值(树形dp)

    P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #incl ...

  6. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  7. 洛谷——P1351 联合权值

    https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...

  8. P1351 联合权值[鬼畜解法]

    题目描述 无向连通图 G 有 n 个点,n−1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi​,每条边的长度均为 1.图上两点 (u,v) 的距离定义为 u 点到 v 点的最短距离 ...

  9. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

随机推荐

  1. java——程序的导出与导入

    导出: 选择项目,右击选择 最下面的properties——Resource——Location,就是你的项目所在地, 找到文件所在,拷贝到你的U盘中(或者直接点击项目直接拖到桌面)完成复制 导入: ...

  2. golang 使用rrd的相关资料

    一.简介      RRDtool是指Round Robin Database工具,即环状数据库.从功能上说,RRDtool可用于数据存储+数据展示.著名的网络流量绘图软件MRTG和集群监控系统Gan ...

  3. thinkphp 手机号和用户名同时登录

    //在注册时用户名不能是纯数字, 防止一个人的用户名和另一个人的手机号相同public function Login(){ if (IS_AJAX) { $username = I('param.us ...

  4. 关于iframe中使用fixed定位的一些问题

    先来看看position: fixed:的定义:生成绝对定位的元素,相对于浏览器窗口进行定位: 但是在iframe中使用fixed定位,实际上是相对于iframe窗口进行定位,原因在于iframe类似 ...

  5. pv-remjs的快速开始

    pv-remjs 这是一个移动端适配的工具类,采用rem布局的方式 ## 快速开始 在html文件中引入,先查看版本`<script src= "https://unpkg.com/p ...

  6. Java Jsp使用

    1.Jsp基础 1)Jsp的执行过程 tomcat服务器完成:jsp文件->翻译成java文件->编译成class字节码文件-> 构造类对象-> 调用方法 tomcat的wor ...

  7. Raspberry U盘操作

    项目系统要求的对U盘分区,分出系统盘与用户盘.这就有了今天的这个总结了: 1.输入命令“fdisk -l”查看设备挂载的位置,因为这个在设备挂载的时候有可能会发生变化. 假设设备挂载到了 /dev/s ...

  8. java 从网上下载文件的几种方式

    package com.github.pandafang.tool; import java.io.BufferedOutputStream; import java.io.File; import ...

  9. PHP 使用WampServer环境,如何配置虚拟主机域名

    很多人不会配置虚拟主机,我这里简单交一下大家,分三步: 1.在 C:\Windows\System32\drivers\etc 文件夹中的文件 Hosts 文件修改代码为: 127.0.0.1 loc ...

  10. 使用pdb调试python脚本

    pdb 是 python 自带的一个包,为 python 程序提供了一种交互的源代码调试功能,主要特性包括设置断点.单步调试.进入函数调试.查看当前代码.查看栈片段.动态改变变量的值等.pdb 提供了 ...