机器学习方法:回归(一):线性回归Linear regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。
开一个机器学习方法科普系列:做基础回顾之用,学而时习之;也拿出来与大家分享。数学水平有限,只求易懂,学习与工作够用。周期会比较长,因为我还想写一些其他的,呵呵。
content:
linear regression, Ridge, Lasso
Logistic Regression, Softmax
Kmeans, GMM, EM, Spectral Clustering
Dimensionality Reduction: PCA、LDA、Laplacian Eigenmap、 LLE、 Isomap(修改前面的blog)
SVM
ID3、C4.5
Apriori,FP
PageRank
minHash, LSH
Manifold Ranking,EMR
待补充
…
…
开始几篇将详细介绍一下线性回归linear regression,以及加上L1和L2的正则的变化。后面的文章将介绍逻辑回归logistic regression,以及Softmax regression。为什么要先讲这几个方法呢?因为它们是机器学习/深度学习的基石(building block)之一,而且在大量教学视频和教材中反复被提到,所以我也记录一下自己的理解,方便以后翻阅。这三个方法都是有监督的学习方法,线性回归是回归算法,而逻辑回归和softmax本质上是分类算法(从离散的分类目标导出),不过有一些场合下也有混着用的——如果目标输出值的取值范围和logistic的输出取值范围一致。
ok,废话不多说。
1、Linear Regression
可以说基本上是机器学习中最简单的模型了,但是实际上其地位很重要(计算简单、效果不错,在很多其他算法中也可以看到用LR作为一部分)。
先来看一个小例子,给一个“线性回归是什么”的概念。图来自[2]。
假设有一个房屋销售的数据如下:
面积(m^2) 销售价钱(万元)
123 250
150 320
87 160
102 220
… …
当我们有很多组这样的数据,这些就是训练数据,我们希望学习一个模型,当新来一个面积数据时,可以自动预测出销售价格(也就是上右图中的绿线);这样的模型必然有很多,其中最简单最朴素的方法就是线性回归,也就是我们希望学习到一个线性模型(上右图中的红线)。不过说是线性回归,学出来的不一定是一条直线,只有在变量x是一维的时候才是直线,高维的时候是超平面。
定义一下一些符号表达,我们通常习惯用X=(x1,x2,...,xn)T∈Rn×p表示数据矩阵,其中xi∈Rp表示一个p维度长的数据样本;y=(y1,y2,...,yn)T∈Rn表示数据的label,这里只考虑每个样本一类的情况。
线性回归的模型是这样的,对于一个样本xi,它的输出值是其特征的线性组合:
其中,w0称为截距,或者bias,上式中通过增加xi0=1把w0也吸收到向量表达中了,简化了形式,因此实际上xi有p+1维度。
线性回归的目标是用预测结果尽可能地拟合目标label,用最常见的Least square作为loss function:
从下图来直观理解一下线性回归优化的目标——图中线段距离(平方)的平均值,也就是最小化到分割面的距离和。
也就是很多中文教材中提到的最小二乘;线性回归是convex的目标函数,并且有解析解:
线性回归到这里就训练完成了,对每一个样本点的预测值是f(xi)=yi^=w^Txi。所以:
接下来看一下我们寻找到的预测值的一个几何解释:从上面的解析解w^=(XTX)−1XTy可以得到XT(y^−y)=0(垂直的向量相乘=0),因此实际上y^是y在平面X(由列向量x1和x2张成,假设只有两维)上的投影。
ok,一般介绍线性回归的文章到这里也就结束了,因为实际使用中基本就是用到上面的结果,解析解计算简单而且是最优解;当然如果求逆不好求的话就可以不用解析解,而是通过梯度下降等优化方法来求最优解,梯度下降的内容不在本篇中,后面讲逻辑回归会说到。也可以看我前面写的今天开始学PRML第5章中有写到,或者直接翻阅wikipedia:gradient descent。
不过在这里我再稍微提几个相关的分析,可以参考ESL[3]的第3章中的内容。前面我们对数据本身的分布是没有任何假设的,本节下面一小段我们假设观察值yi都是不相关的,并且方差都是σ2,并且样本点是已知(且是中心化过了的,均值为0)的。于是我们可以推出协方差矩阵
证明:
要估计方差σ2,可以用
这里和一般的方差的形式看起来不同,分母是n−p−1而不是n,是因为这样的估计才是σ2的无偏估计。
证明:
好,第一篇就写到这里。这个系列是从0开始的基础复习记录,力求清晰易懂。下一篇lasso和ridge regression。
参考资料
[1]http://freemind.pluskid.org/machine-learning/sparsity-and-some-basics-of-l1-regularization/
[2]http://www.cnblogs.com/LeftNotEasy/archive/2010/12/05/mathmatic_in_machine_learning_1_regression_and_gradient_descent.html
[3]The Elements of Statistical Learning,ch3
机器学习方法:回归(一):线性回归Linear regression的更多相关文章
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
- 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示 ...
- ML 线性回归Linear Regression
线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Rep ...
随机推荐
- warning: React does not recognize the xxx prop on a DOM element
这是React不能识别dom元素上的非标准attribute报出的警告,最终的渲染结果中React会移除这些非标准的attribute. 通常{...this.props}和cloneElement( ...
- BZOJ1832 聚会
Description:Y岛风景美丽宜人,气候温和,物产丰富.Y岛上有N个城市,有N-1条城市间的道路连接着它们.每一条道路都连接某两个城市.幸运的是,小可可通过这些道路可以走遍Y岛的所有城市.神奇的 ...
- [zhuan]VMware中bridge方式网络不能上网的解决办法
http://jingpin.jikexueyuan.com/article/31601.html 安装好VMware 7后,打开原来的虚拟机文件,发现不能上网,原来的Ethernet是设置的Brid ...
- CSS设计一个三列布局的页面
探讨这种布局是因为最近对话框组件以及信息系统B/S界面布局的需要.无论是什么,我们在写CSS之前首先引入reset.css,我使用的是淘宝的reset. 01 /* 02 KISSY CSS Rese ...
- JavaScript转换与解析JSON的方法
在JavaScript中将JSON的字符串解析成JSON数据格式,一般有两种方式: 一种为使用eval()函数. 使用Function对象来进行返回解析. 使用eval函数来解析,jquery的eac ...
- iOS-查询数据库-->指定数据表中的当前数据行的总数量
很多时候,我们在查询一个表的时候,不想得到里面的记录内容,只是想简单的得到符合查询条件的记录条数. FMDB中有一个很简单的方法就可以实现,见下面的代码实例: #import "FMdata ...
- 访问修饰符public,private,protected和default的区别?
类的成员不写访问修饰符默认为default,默认对于同一个包的其他类相当于公开(public),对于不是同一个包的其他类相当于私有(private). 受保护(protected)对子类相当于公开,对 ...
- Mybatis批量更新详解
转:http://www.cnblogs.com/winkey4986/p/3915151.html Mybatis批量更新 批量操作就不进行赘述了.减少服务器与数据库之间的交互.网上有很多关于批量插 ...
- Java设计模式の单例模式
-------------------------------------------------- 目录 1.定义 2.常见的集中单例实现 a.饿汉式,线程安全 但效率比较低 b.单例模式的实现:饱 ...
- 实现一个简单的Vue插件
我们先看官方文档对插件的描述 插件通常会为 Vue 添加全局功能.插件的范围没有限制--一般有下面几种: 1.添加全局方法或者属性,如: vue-custom-element 2.添加全局资源:指令/ ...