【比赛】洛谷夏令营NOIP模拟赛
Day1
第一题
水题
第二题
题意:一个n*m的字符矩阵从左上到右下,经过字符形成回文串的路径数。n≤500
回文串,考虑两段往中间DP。
f[k][x][y]表示走了k步,左上点横坐标为x,右下点横坐标为y的路径数。
两端2*2四种情况转移,k步这维滚动。
第三题
题意:区间加数,区间覆盖,询问区间x次幂和。n≤10^5。
主要难点在区间加数时维护x次幂和……实际上就是简单的二项式展开。
Σ(a+b)^n=Σ[ΣC(n,r)*a^(n-r)*b^r]=Σ[C(n,r)*Σa^(n-r)*b^r] r=0~n
只要维护x次幂和就好了。
坑:枚举排列!!!
【比赛】洛谷夏令营NOIP模拟赛的更多相关文章
- [洛谷0925]NOIP模拟赛 个人公开赛 OI
P3395 路障 题目背景 此题约为NOIP提高组Day1T1难度. 题目描述 B君站在一个n*n的棋盘上.最开始,B君站在(1,1)这个点,他要走到(n,n)这个点. B君每秒可以向上下左右的某个 ...
- 洛谷CON1041 NOIP模拟赛一试
A T2-power of 2 题目描述 是一个十分特殊的式子. 例如: n=0时 =2 然而,太大了 所以,我们让对10007 取模 输入输出格式 输入格式: n 输出格式: % 10007 输入 ...
- 洛谷 P5046 [Ynoi2019 模拟赛] Yuno loves sqrt technology I(分块+卡常)
洛谷题面传送门 zszz,lxl 出的 DS 都是卡常题( 首先由于此题强制在线,因此考虑分块,我们那么待查询区间 \([l,r]\) 可以很自然地被分为三个部分: 左散块 中间的整块 右散块 那么这 ...
- [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III
题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...
- 【洛谷】xht模拟赛 题解
前言 大家期待已久并没有的题解终于来啦~ 这次的T1和HAOI2016撞题了...深表歉意...表示自己真的不知情... 天下的水题总是水得相似,神题各有各的神法.--<安娜·卡列妮娜> ...
- 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)
传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...
- 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)
题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...
- NOIP模拟赛 篮球比赛2
篮球比赛2(basketball2.*) 由于Czhou举行了众多noip模拟赛,也导致放学后篮球比赛次数急剧增加.神牛们身体素质突飞猛进,并且球技不断精进.这引起了体育老师彩哥的注意,为了给校篮球队 ...
- NOIP模拟赛-2018.11.6
NOIP模拟赛 今天想着反正高一高二都要考试,那么干脆跟着高二考吧,因为高二的比赛更有技术含量(我自己带的键盘放在这里). 今天考了一套英文题?发现阅读理解还是有一些困难的. T1:有$n$个点,$m ...
随机推荐
- Alpha冲刺——第三天
Alpha第三天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...
- Ubuntu录制gif动态图
大神写博客的时候通常一个Demo会附带一个动态图展示效果.在windows和mac上应该很容易找到录制工具,下面记录一下我在ubuntu下录制gif的过程. 下载byzanz录制工具 在ubuntu软 ...
- 深入了解View的绘制流程
1. ViewRoot ViewRoot是连接WindowManager与DecorView的纽带,View的整个绘制流程的三大步(measure.layout.draw)都是通过ViewRoot完 ...
- 【week5】psp
本周psp psp饼图: 随笔字数折线图: 代码行折线图:
- tweenjs缓动算法使用小实例
这里的tweenjs不是依托于createjs的tewwnjs,而是一系列缓动算法集合.因为本身是算法,可以用在各个业务场景中,这也正是总结学习它的价值所在.tweenjs代码详情: /* * Twe ...
- 第61天:json遍历和封装运动框架(多个属性)
一.json 遍历 for in 关键字 for ( 变量 in 对象) { 执行语句; } 例如: var json = {width:200,height:300,left:50}co ...
- asp.net异步上传
界面如下:
- 【bzoj1441】Min 扩展裴蜀定理
题目描述 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 输入 第一行给出数字N,代表有N个数 下面一行给出N个数 输出 S ...
- CentOS 用户管理useradd、usermod等
1.创建新用户useradd,默认的用户家目录会被存放在/home 目录中,默认的 Shell 解释器为/bin/bash,而且默认会创建一个与该用户同名的基本用户组. 主要参数: -d 指定用户的家 ...
- C# 类反射创建对象实例
object obj= Activator.CreateInstance(Type type);