给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b)。
例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。
由于结果可能很大,输出Mod 10^9 + 7的结果。(测试数据为随机数据,没有构造特别坑人的Test)
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:每行2个数a, b,中间用空格分隔(1 <= a <= b <= 10^9)
Output
共T行,输出对应的最小公倍数之和Mod 10^9 + 7的结果。
Input示例
3
1 6
10 15
41 90
Output示例
66
675
139860
—————————————————————————————————
这道题可以转化一下公式变成莫比乌斯反演

d*mu(d) 因为是积性函数 所以可以直接推 这样就完成辣2333
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int M=1e5+,mod=1e9+,P=(mod+)/,mx=4e4+;
using std::max;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int T,n,p[M],cnt,h[M],pri[mx],xp;
LL v,ans,vis[mx],l;
void dfs(int step,LL T,LL g){
if(step==cnt+){
ans=(ans+((+n/T)*(n/T)/-(+l/T)*(l/T)/)%mod*g%mod)%mod;
return ;
}
LL sum=;
dfs(step+,T*sum,g);
for(int i=;i<=h[step];i++){
sum=sum*p[step];
dfs(step+,T*sum,g*(-p[step]));
}
}
int main(){
T=read();
for(int i=;i<=mx;i++)if(!vis[i]){
pri[++xp]=i; vis[i]=;
for(int j=*i;j<=mx;j+=i) vis[j]=;
}
while(T--){
cnt=; ans=;
l=read()-; n=read(); v=n;
for(LL x=;pri[x]*pri[x]<=v;x++)if(v%pri[x]==){
p[++cnt]=pri[x]; h[cnt]=;
while(v%pri[x]==) v/=pri[x],h[cnt]++;
}
if(v!=) p[++cnt]=v,h[cnt]=;
dfs(,,); ans=(ans%mod+mod)%mod;
printf("%lld\n",n*ans%mod);
}
return ;
}
 
 

51nod 1190 最小公倍数之和 V2的更多相关文章

  1. 51nod 1190 最小公倍数之和 V2【莫比乌斯反演】

    参考:http://blog.csdn.net/u014610830/article/details/49493279 这道题做起来感觉非常奇怪啊--头一次见把mu推出来再推没了的-- \[ \sum ...

  2. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  3. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  4. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  5. 【51Nod 1190】最小公倍数之和 V2

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1190 \[ \begin{aligned} &\sum_{i=a ...

  6. 51nod - 1363 - 最小公倍数之和 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1363 求\(\sum\limits_{i=1}^{n}lcm(i,n)\) 先换成 ...

  7. [51nod1190]最小公倍数之和V2(莫比乌斯反演)

    题解 传送门 题解 我是真的不明白这玩意儿是怎么跟反演扯上关系的-- 首先 \[ \begin{align} ans &=b\sum_{d|b}{1\over d}\sum_{i=a}^{b} ...

  8. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

  9. [51Nod 1238] 最小公倍数之和 (恶心杜教筛)

    题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N ...

随机推荐

  1. oracle数据库之PL/SQL 块结构和组成元素

    一.PL/SQL 块 (一)PL/SQL 程序由三个块组成,即声明部分.执行部分.异常处理部分 PL/SQL 块的结构如下: 1.DECLARE /* 声明部分: 在此声明 PL/SQL 用到的变量, ...

  2. Unity3d学习日记(三)

      使用Application.LoadLevel(Application.loadedLevel);来重新加载游戏scene的方法已经过时了,我们可以使用SceneManager.LoadScene ...

  3. CCleaner专业版注册码

    下载软件安装之后: 1.断网 2.用户名:任意,注册码:C2YW-XZT7-A4SE-UD89-YZPC

  4. SPDY以及HTTP2.0

    背景介绍 HTTP2.0跟SPDY在不少理念上是相似的,目的都是为了提升HTTP1.1的性能. HTTP2.0将会是业界的标准,比SPDY要完善,今后可能会都转向http2.0而放弃SPDY. SPD ...

  5. winform中文本框添加拖拽功能

    对一个文本框添加拖拽功能: private void txtFolder_DragEnter(object sender, DragEventArgs e) { if (e.Data.GetDataP ...

  6. asp.net中缓存的使用

    刚学到asp.net怎么缓存,这里推荐学习一下 www.cnblogs.com/wang726zq/archive/2012/09/06/cache.html http://blog.csdn.net ...

  7. 可持久化Treap

    终于写了一次可持久化Treap,做的是可持久化序列的模板题. Treap Treap=Tree+Heap,是一个随机化的数据结构.它的每个节点至少有两个关键字,一个是我们要存储的\(val\),一个是 ...

  8. BZOJ 1898 沼泽鳄鱼(矩阵快速幂)

    没有食人鱼不是裸题吗,用一个向量表示从s到1..N的距离,然后不停乘邻接矩阵行了,当然快速幂 有食人鱼,发现食人鱼最多十二个邻接矩阵一循环,处理出12个作为1个然后快速幂行了   怎么处理呢? 假设食 ...

  9. NOIP2018初赛 游记

    这玩意写个鬼游记啊 听说普及+提高的考两张卷子€€£也是想得出来 怎么监考还能咕咕咕的啊 怎么我到快结束了才做完啊 怎么我根本不知道初赛能带啥啊 怎么dij我都能想着对的选了错的啊 怎么我根本不知道图 ...

  10. Git更新github项目

    1. 把github上你想要更新修改的项目克隆到本地 $ git clone https://github.com/delav/test.git 2. 根据自己需求对项目进行修改 3. 把项目放到缓存 ...