【算法】二分+spfa

【题解】据说这个叫分数规划?

0-1分数规划

二分答案a,则对于任意的环有w/k≤a即w-ak≤0,若满足条件则a变小,否则a变大。

因为w=w1+w2+...+wk,所以变形为(w1-a)+(w2-a)+...+(wk-a)≤0。于是问题转化为在图中找负环。

不过由于spfa限制,“=”没办法并入"<",但是由于精度足够,最后也就是1.00000000001≈1.00000000。

使用DFS的spfa:可以在发现更新到之前更新过的节点就认为是负环(从x跑出去最后又回来更新x,说明跑的这段路是负数)。

spfa的d数组(最短路)全部初始化为0(即只更新路径为负的),相当于设置一个起点向所有点连容量为0的边,因为是全图找负环。

确认某个曾访问的节点是祖先,这是DFS的特性和优势。

精度问题:107要求精确到10-8即log(1015)/log(2)=49,所以跑60次二分就能保证精度没问题了。

因为一个memset的size是double(以为是int)调了2小时……QAQ

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=,maxm=;
const double eps=1e-;
struct edge{int from,v;double w;}e[maxm];
int n,m,first[maxn],tot=;
double d[maxn],w[maxm];
bool vis[maxn],flag;
void insert(int u,int v,double w)
{tot++;e[tot].v=v;e[tot].w=w;e[tot].from=first[u];first[u]=tot;}
void spfa(int x)
{
vis[x]=;
for(int i=first[x];i;i=e[i].from)
if(!flag&&d[e[i].v]>d[x]+e[i].w)
{
if(vis[e[i].v])
{
flag=;
break;
}
d[e[i].v]=d[x]+e[i].w;
spfa(e[i].v);
}
vis[x]=;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v;
scanf("%d%d%lf",&u,&v,&w[i]);
insert(u,v,w[i]);
}
double l=-,r=;
while(r-l>eps)
{
double mid=(l+r)/;
flag=;
memset(d,,*(n+));
memset(vis,,(n+));
for(int i=;i<=tot;i++)e[i].w=w[i]-mid;
for(int i=;i<=n;i++)if(!flag)spfa(i);
if(flag)r=mid;else l=mid;
}
printf("%.8lf",l);
return ;
}

【BZOJ】1486 [HNOI2009]最小圈的更多相关文章

  1. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  2. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  3. [BZOJ 1486][HNOI2009]最小圈(二分答案+dfs写的spfa判负环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1486 分析:容易想到先二分答案x,然后把所有边的权值-x,那么如果图中存在权值和为0的 ...

  4. BZOJ 1486: [HNOI2009]最小圈 [01分数规划]

    裸题...平均权值最小的环.... 注意$dfs-spfa$时$dfs(cl)$...不要写成$dfs(u)$ #include <iostream> #include <cstdi ...

  5. bzoj 1486: [HNOI2009]最小圈

    Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Sample Output 3.66666667 HIN ...

  6. 1486: [HNOI2009]最小圈

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 3129  Solved: 1543[Submit][Status][Discuss] Descripti ...

  7. 1486: [HNOI2009]最小圈 - BZOJ

      在机房的小伙伴提醒是二分之后,我想到了是判负环,所以我用spfa,而且我保持dis都是小于等于0,本以为这样就能过了,可是还是有一个点达到了3.8s左右(其他都是0.0几秒) 所以还是写了dfs版 ...

  8. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  9. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

随机推荐

  1. YaoLingJump开发者日志(二)

      熟悉了一点LGame里的套路,可以正式开工了.   增加了一个信息栏,显示得分.硬币数.生命值和当前关卡(仿照了超级玛丽的布局).   准备瑶玲的各种动画(静止.奔跑.跳跃.趴下.休息和死亡等). ...

  2. 修改IntelliJ IDEA字体

  3. centos7 安装 httpd并打开测试页

    systemctl start firewalld.service#启动firewallsystemctl stop firewalld.service#停止firewallsystemctl dis ...

  4. windows批处理学习---01

    一. 标记符号: CR(0D) 命令行结束符 Escape(1B) ANSI转义字符引导符 Space() 常用的参数界定符 Tab() ; = 不常用的参数界定符 + COPY命令文件连接符 * ? ...

  5. 第四章 持续集成jenkins工具使用之项目配置

    1.1   创建项目 点击“新建”,输入项目名称,选择“构建一个自由风格的软件项目”,点击ok,项目创建完成. 1.2   配置项目 点击步骤1创建的项目,进入项目页面,如图: 点击“配置”,进入配置 ...

  6. SQL SERVER技术内幕之6 集合查询

    1.定义 集合运算会对两个输入查询的结果集进行逐行比较,根据比较结果和所使用的集合运算来确定某一行是否应该包含在集合运算的结果中.因为集合运算是针对集合之间进行的计算,所以集合运算涉及的两个查询不能包 ...

  7. js 复制到剪贴板 兼容还得自己想办法

    clipboard.js https://github.com/zenorocha/clipboard.js/ 主要问题还是ie8, 可以使用ie 特有的方法 if (window.clipboard ...

  8. 详细图解jQuery对象,以及如何扩展jQuery插件

    详细图解jQuery对象,以及如何扩展jQuery插件 早几年学习前端,大家都非常热衷于研究jQuery源码.我还记得当初从jQuery源码中学到一星半点应用技巧的时候常会有一种发自内心的惊叹,“原来 ...

  9. Android中WebView的跨域漏洞分析和应用被克隆问题情景还原(免Root获取应用沙盒数据)

    一.前言 去年年底支付宝的被克隆漏洞被爆出,无独有偶就是腾讯干的,其实真正了解这个事件之后会发现,感觉是针对支付宝.因为这个漏洞找出肯定花费了很大劲,主要是因为支付宝的特殊业务需要开启了WebView ...

  10. BZOJ4570:[SCOI2016]妖怪——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4570 邱老师是妖怪爱好者,他有n只妖怪,每只妖怪有攻击力atk和防御力dnf两种属性.邱老师立志成 ...