Strongly connected

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4765    Accepted Submission(s): 1880

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635

Description:

Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 

Input:

The first line of date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.

Output:

For each case, you should output the maximum number of the edges you can add.
If the original graph is strongly connected, just output -1.

Sample Input:

3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4

Sample Output:

Case 1: -1
Case 2: 1
Case 3: 15

题意:

给出一个有向图,保证图中无重边。现在要求加尽量多的边,使得最终的图不是强连通的,即任意两点可以互相到达,并且图中无重边。

题解:

可以想到,最终的图是一个二部图,设左边这部分为X,右边这部分为Y,那么X,Y之间只有单向边,同时X,Y中所有点都是强连通的,此时满足条件。

现在的问题就是这么确定这个X,Y。假设X中有x个点,同理,Y中有y个点,然后来计算一波:

此时图中的边数为x*(x-1)+y*(y-1)+x*y=x2+y2+x*y-x-y=(x+y)2-x*y-x-y=n2-n-x*y。现在要使得边数最大,那么x*y就尽量小,又因为x+y为定值,那么要么x尽可能小,要么y尽可能小就是了。

然后由于图中可能存在环,我们就先用Tarjan缩点,然后选取包含点数最少,并且出度或者入度为0的那个点作为X部,之后计算一波就行了。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <iostream>
using namespace std;
typedef long long ll;
const int N = 1e5+;
int t,n,m,tot;
int head[N],num[N],in[N],out[N];
stack <int> s;
struct Edge{
int u,v,next;
}e[N<<],g[N<<];
void adde(int u,int v){
e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
}
int T,cc;
int scc[N],dfn[N],low[N],vis[N];
void Tarjan(int u){
dfn[u]=low[u]=++T;vis[u]=;
s.push(u);
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!vis[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(!scc[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
cc++;int now;
do{
now = s.top();s.pop();
scc[now]=cc;
num[cc]++;
}while(!s.empty() && now!=u);
}
}
int main(){
cin>>t;
int Case=;
while(t--){
Case++;
memset(head,-,sizeof(head));tot=;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
g[i].u=u;g[i].v=v;
adde(u,v);
}
memset(dfn,,sizeof(dfn));
memset(scc,,sizeof(scc));T=;
memset(vis,,sizeof(vis));cc=;
memset(num,,sizeof(num));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
for(int i=;i<=n;i++){
if(!vis[i]) Tarjan(i);
}
printf("Case %d: ",Case);
if(cc==){
puts("-1");
continue ;
}
for(int i=;i<=m;i++){
int u=g[i].u,v=g[i].v;
if(scc[u]==scc[v]) continue ;
in[scc[v]]++;out[scc[u]]++;
}
ll tmp = n*(n-)-m;
ll ans = ;
for(int i=;i<=cc;i++){
if(!in[i] || !out[i]) ans=max(ans,tmp-num[i]*(n-num[i]));
}
cout<<ans<<endl;
}
return ;
}

HDU4625:Strongly connected(思维+强连通分量)的更多相关文章

  1. [HDOJ4635]Strongly connected(强连通分量,缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给一张图,问最多往这张图上加多少条边,使这张图仍然无法成为一个强连通图. 起初是先分析样例 ...

  2. HDU 4635 Strongly connected(强连通分量,变形)

    题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...

  3. HDU 4635 Strongly connected ——(强连通分量)

    好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设 ...

  4. HDU 4635 Strongly connected(强连通分量缩点+数学思想)

    题意:给出一个图,如果这个图一开始就不是强连通图,求出最多加多少条边使这个图还能保持非强连通图的性质. 思路:不难想到缩点转化为完全图,然后找把它变成非强连通图需要去掉多少条边,但是应该怎么处理呢…… ...

  5. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 4635:Strongly connected(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给出n个点和m条边,问最多能添加几条边使得图不是一个强连通图.如果一开始强连通就-1.思路:把图分成 ...

  7. Codeforces 950E Data Center Maintenance ( 思维 && 强连通分量缩点 )

    题意 : 给出 n 个点,每个点有一个维护时间 a[i].m 个条件,每个条件有2个点(x,y)且 a[x] != a[y].选择最少的 k (最少一个)个点,使其值加1后,m个条件仍成立. 分析 : ...

  8. hdu 4635 Strongly connected(强连通)

    考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...

  9. HDU4635 Strongly connected【强连通】

    题意: 给一个n个点的简单有向图,问最多能加多少条边使得该图仍然是简单有向图,且不是强连通图.简单有向图的定义为:没有重边,无自环. 强连通图的定义为:整个图缩点后就只有一个点,里面包含n个原点,也就 ...

随机推荐

  1. 【text】 文本组件说明

    text文本组件:在小程序里除了文本节点以外的其他节点都无法长按选中. 原型: <text selectable="[Boolean]" space="[ensp ...

  2. Hexo 博客 之 腾讯云部署过程

    写在前面 Hexo 博客搭好了有差不多两周时间了,这期间走了很多弯路,跳了很多坑.一些坑自己 bing 到了答案,找到了解决方法,一些坑则是自己摸索出来的解决方法.现在准备写几篇关于搭建流程.搭建过程 ...

  3. svn升级(mac)

    原文链接:http://www.jianshu.com/p/c81712ecccb8 升级前 svn版本1.7.20 升级之后 1.9.2 步骤: 1. 下载最新版svn,链接:http://www. ...

  4. 自动对象&局部静态对象

    一.关键点 对象的生命周期:程序执行过程中,该对象存在的那段时间 局部对象:形参.函数体内部定义的变量 二.自动对象 自动对象:只存在于块执行期间的对象 包括:局部变量.形参 三.局部静态对象 特点: ...

  5. Bus of Characters(栈和队列)

    In the Bus of Characters there are nn rows of seat, each having 22 seats. The width of both seats in ...

  6. DAY3敏捷冲刺

    站立式会议 工作安排 (1)服务器配置 (2)数据库配置 燃尽图 燃尽图有误,已重新修改,先贴卡片的界面,后面补修改后燃尽图 代码提交记录

  7. noauth authentication required redis

    解决方案: 这是出现了认证的问题,是因为设置了认证密码. 127.0.0.1:6379> auth "yourpassword" 例如:

  8. C# 执行bat文件

    private void RunBat(string batPath) { Process pro = new Process(); FileInfo file = new FileInfo(batP ...

  9. Zigbee安全基础篇Part.2

    原文地址: https://www.4hou.com/wireless/14252.html 导语:本文将会探讨ZigBee标准提供的安全模型,用于安全通信的各种密钥.ZigBee建议的密钥管理方法以 ...

  10. 3dContactPointAnnotationTool开发日志(十二)

      因为ReferenceImage的锚点是固定的左下角,缩放时controller面板也会跟着动.为了使Scale的时候controller上的slider不会远离指针,于是把controller固 ...