题目链接

题目

题目描述

珂朵莉给了你一个序列,有 \(\frac{n\times(n+1)}2\) 个子区间,求出她们各自的逆序对个数,然后加起来输出

输入描述

第一行一个数 n 表示这个序列 a 的长度之后一行 n 个数,第i个数表示ai

输出描述

输出一行一个数表示答案

示例1

输入

10
1 10 8 5 6 2 3 9 4 7

输出

270

示例2

输入

20
6 0 4 5 8 8 0 6 6 1 0 4 6 6 0 0 7 2 0 5

输出

3481

备注

对于100%的数据,n <=1000000 ,0 <= 序列中每个数 <= 1000000000

题解

知识点:线段树,离散化,枚举。

这道题在经典的逆序对问题上加了一点点东西。

对于经典逆序对问题,是通过从左到右枚举每个数,对于某个数求出在它左边且大于它的数的个数,利用线段树或树状数组的权值和解决的。在这道题,我们可以借用这个思路。

假设数组 \(a\) 有 \(n\) 个数,考虑一对逆序对 \((x,y),x<y\) 产生的贡献,显然是包含其的区间个数 \(x(n-y+1)\) ,其中 \(a_x\) 贡献了 \(x\) 个有效点, \(a_y\) 贡献了 \(n - y + 1\) 个有效点。

我们固定右端点 \(y\) ,那么产生的贡献为 \((n-y+1)\displaystyle \sum_{x<y,a_x > a_y}x\) ,只需要求出在它左边且大于它的数贡献的有效点的个数和,只需要将逆序对问题中的权值从个数替换为贡献的有效点个数即可。

因此,我们从左到右枚举每个数(枚举顺序维护了在左边的偏序关系),用权值线段树维护出现过的数的权值(有效点个数),随后只需要询问大于当前数的权值和(线段树维护了大于的偏序关系),即为 \(\displaystyle \sum_{x<y , a_x>a_y}x\) 。

另外,本题数据范围要离散化,结果超过 long long ,要用 __int128_t

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; template<class T>
struct Discretization {
vector<T> uniq;
Discretization() {}
Discretization(const vector<T> &src) { init(src); }
void init(const vector<T> &src) {
uniq = src;
sort(uniq.begin() + 1, uniq.end());
uniq.erase(unique(uniq.begin() + 1, uniq.end()), uniq.end());
}
int get(T x) { return lower_bound(uniq.begin() + 1, uniq.end(), x) - uniq.begin(); }
}; struct T {
ll sum;
static T e() { return { 0 }; }
friend T operator+(const T &a, const T &b) { return { a.sum + b.sum }; }
};
struct F {
int add;
T operator()(const T &x) { return { x.sum + add }; }
}; template<class T, class F>
class SegmentTree {
int n;
vector<T> node; void update(int rt, int l, int r, int x, F f) {
if (r < x || x < l) return;
if (l == r) return node[rt] = f(node[rt]), void();
int mid = l + r >> 1;
update(rt << 1, l, mid, x, f);
update(rt << 1 | 1, mid + 1, r, x, f);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
} T query(int rt, int l, int r, int x, int y) {
if (r < x || y < l) return T::e();
if (x <= l && r <= y) return node[rt];
int mid = l + r >> 1;
return query(rt << 1, l, mid, x, y) + query(rt << 1 | 1, mid + 1, r, x, y);
} public:
SegmentTree(int _n = 0) { init(_n); } void init(int _n) {
n = _n;
node.assign(n << 2, T::e());
} void update(int x, F f) { update(1, 1, n, x, f); } T query(int x, int y) { return query(1, 1, n, x, y); }
}; template<class T>
inline void write(T x) {
if (x < 0) { putchar('-');x = -x; }
if (x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1;i <= n;i++) cin >> a[i]; Discretization<int> dc(a);
int n_rk = dc.uniq.size() - 1;
SegmentTree<T, F> sgt(n_rk); // 假设i < j,若有逆序对(i,j),那么贡献为i*(n-j+1)
// 从左往右枚举逆序对右侧的数字a[i],则可以累加左侧数字,即[1,i-1],>a[i]的数的贡献,最后乘n-i+1即可
__int128_t ans = 0;
for (int i = 1;i <= n;i++) {
ans += sgt.query(dc.get(a[i]) + 1, n_rk).sum * (n - i + 1);
sgt.update(dc.get(a[i]), { i });
} write(ans);
puts("");
return 0;
}

NC14522 珂朵莉的数列的更多相关文章

  1. 牛客练习赛7 E 珂朵莉的数列

    珂朵莉的数列 思路: 树状数组+高精度 离散化不知道哪里写错了,一直wa,最后用二分写的离散化 哪位路过大神可以帮我看看原来的那个离散化错在哪里啊 通过代码: import java.math.Big ...

  2. 牛客练习赛7 E 珂朵莉的数列(树状数组+爆long long解决方法)

    https://www.nowcoder.com/acm/contest/38/E 题意: 思路: 树状数组维护.从大佬那里学习了如何处理爆long long的方法. #include<iost ...

  3. 牛客练习赛7E 珂朵莉的数列

    题意:求所有子区间的逆序数对数之和 题解:树状数组维护,对于每一对逆序数(l,r)属于l*(n-r+1)个区间,计算每一对对结果的贡献即可,可用树状数组维护,sum维护(n-r+1),按逆序数那样操作 ...

  4. 『珂朵莉树 Old Driver Tree』

    珂朵莉树 珂朵莉树其实不是树,只是一个借助平衡树实现的数据结构,主要是对于有区间赋值的数据结构题,可以用很暴力的代码很高效地完成任务,当然这是建立在数据随机的基础上的. 即使数据不是随机的,写一个珂朵 ...

  5. 【学习笔记】珂朵莉树(ODT)

    珂朵莉树 \(\tt 0x00\) 起源 起源于 CodeForces 的一题 CF896C,当时出题人提供了这种做法,在随机数据下均摊复杂度比较优秀. 正统名字好像叫颜色段均摊,由于题目也得名于 \ ...

  6. 洛谷AT2342 Train Service Planning(思维,动态规划,珂朵莉树)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 建立数学模型 这种很抽象的东西没有式子描述一下显然是下不了手的. 因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\ ...

  7. [转]我的数据结构不可能这么可爱!——珂朵莉树(ODT)详解

    参考资料: Chtholly Tree (珂朵莉树) (应某毒瘤要求,删除链接,需要者自行去Bilibili搜索) 毒瘤数据结构之珂朵莉树 在全是珂学家的珂谷,你却不知道珂朵莉树?来跟诗乃一起学习珂朵 ...

  8. 牛客练习赛9 F - 珂朵莉的约数

    题目描述 珂朵莉给你一个长为n的序列,有m次查询 每次查询给两个数l,r 设s为区间[l,r]内所有数的乘积 求s的约数个数mod 1000000007 输入描述: 第一行两个正整数n,m第二行一个长 ...

  9. 牛客练习赛9 B - 珂朵莉的值域连续段

    题目描述 珂朵莉给你一个有根树,求有多少个子树满足其内部节点编号在值域上连续 一些数在值域上连续的意思即其在值域上构成一个连续的区间 输入描述: 第一行有一个整数n,表示树的节点数.接下来n–1行,每 ...

  10. [洛谷P3987]我永远喜欢珂朵莉~

    [洛谷P3987]我永远喜欢珂朵莉~ 题目大意: 给你\(n(n\le10^5)\)个数\(A_{1\sim n}(A_i\le5\times10^5)\),\(m(m\le5\times10^5)\ ...

随机推荐

  1. Skywalking 搭建 nacos 注册中心及mysql 存储的集群架构

    本文为博主原创,未经允许不得转载 Skywalking 集群是将skywalking oap作为一个服务注册到nacos上,只要skywalking oap服务没有全部宕机,保证有一个skywalki ...

  2. 问题--缺少 cryptography 包

    1.问题 raise RuntimeError( RuntimeError: 'cryptography' package is required for sha256_password or cac ...

  3. [转帖]Oracle中为什么需要NCHAR

    https://zhuanlan.zhihu.com/p/668402759 Oracle中已经有了char.varchar2等字符类型,为什么又弄出一个nchar.nvarchar2? Oracle ...

  4. Oceanbase部分参数学习与验证

    Oceanbase部分参数学习与验证 字符集等参数查看 yum install obclient -y 然后使用客户端连接: obclient -h172.24.110.175 -P2881 -uro ...

  5. [转帖]Linux搭建Nexus仓库+高可用方案

    https://www.cnblogs.com/yangjianan/p/9090348.html Linux搭建nexus仓库 1.安装jdk 1.1 获取安装包,解压到指定目录: 1 tar xf ...

  6. [转帖]十大主流Nehalem服务器横评(多图)

    https://server.51cto.com/article/201820.html 作者:佚名2010-05-25 09:52:27 运维服务器运维 除了我们的两台基准服务器之外,本次横向评测活 ...

  7. [转帖]Nginx(2):架构设计与工作流程

    https://cloud.tencent.com/developer/article/1886166?areaSource=&traceId= 这些天呐,实在是给我看晕了.起因自然还是对 n ...

  8. Oracle数据库权限学习--表或者是视图不存在

    Oracle数据库权限学习--表或者是视图不存在 摘要 本文写于: 12.10 01:00 巴西踢的太烂了 帮同事看一下补丁执行报错的问题. 问题原因很简单. user_all_table能够后去本用 ...

  9. Systemd设置ulimit的方式与方法

    Systemd设置ulimit的方式与方法 摘要 Linux安装完成之后前面几件事情一般是处理selinux 以及处理ulimit 其实处理文件打开数有多种方法,之前也总结过, 但是最近因为syste ...

  10. redis 6源码解析之 object

    redis对象作为redis存储的基本单元,对应redisDb->dict 中的dictEntry->key和dictEntry->val. 更全面的图谱 源码解析参见:object ...