淘宝二面:千万级数据中如何用Redis维护热点数据"?
MySQL里有千万条数据,但是Redis中只存10万的数据,如何保证redis中的数据都是热点数据?
我是小宋, 一个只熬夜但不秃头的Java程序员。关注我,带你轻松过面试。提升简历亮点(14个demo)
我的面试集已有12W+ 浏览量。
号:tutou123com。拉你进面试专属群。
微信公众号:小宋编码
1. 引言
在互联网高速发展的今天,尤其是对于淘宝这样的大型电商平台,数据的高效管理和快速访问是保证用户体验的核心。面对数千万量级的数据,传统的数据库系统面临巨大挑战。此时,Redis作为内存数据库的杰出代表,以其卓越的读写性能,成为我们提升系统响应速度的利器。但如何在有限的缓存空间内,精准地缓存那些高频访问的热点数据呢?这就需要我们运用一系列精细化的数据管理策略和缓存淘汰机制。
2. 技术背景
- MySQL与Redis的关系及应用场景:MySQL作为关系型数据库,擅长处理复杂数据关系和持久化存储,而Redis则以其高速的内存读写能力,擅长处理大量并发的读取操作。
- Redis内存管理和数据淘汰机制简介:面对有限的内存资源,Redis通过多种数据淘汰策略,如LFU(Least Frequently Used),智能地管理内存,确保缓存中始终保留访问频率最高的数据。
3. 实现方案
- LFU淘汰策略:利用Redis的LFU策略,自动淘汰访问频率最低的数据,为热点数据留出空间。
- LRU淘汰策略:虽然Redis没有精确实现LRU,但提供了近似的LRU行为,以最近最少使用的原则淘汰数据。
- 结合访问频率设定过期时间:根据数据的访问频率动态调整其在Redis中的过期时间,以保持缓存的热点数据。
- 基于时间窗口的缓存淘汰策略:通过设定时间窗口,实时跟踪并记录数据的访问情况,据此进行缓存淘汰。
- 手动缓存控制:对于已知的热点数据,通过手动更新操作,确保其在Redis中的缓存是最新的。
- 利用数据结构优化:使用Redis的Sorted Set等数据结构,进一步精细化管理热点数据。
4. 实际业务中实践方案
在淘宝等电商平台的实际应用中,我们采用了多元化的策略来确保Redis中缓存的20万数据是真正的热点数据。通过LFU策略和动态调整过期时间,结合应用层面的访问频率追踪和响应式调整,以及利用Redis的数据结构优化,我们成功实现了热点数据的精确缓存与淘汰。
5. 总结
本文详细阐述了在电商平台例如淘宝及其他类似场景下,如何结合LFU策略与访问频率调整,优化Redis中10万热点数据的管理。通过配置Redis近似的LFU淘汰策略,结合应用层面对访问频率的实时追踪与响应式调整,以及利用多样化的Redis数据结构如有序集合和哈希表,成功实现了热点数据的精确缓存与淘汰。
ppt:
高效应对海量数据挑战:Redis热点数据管理策略.pptx
pdf:高效应对海量数据挑战:Redis热点数据管理策略.pdf
你的点赞就是我的动力
加油!为了更好的自己
面试+源码 让技术简单
淘宝二面:千万级数据中如何用Redis维护热点数据"?的更多相关文章
- 如何使redis中存放的都是热点数据?
当redis使用的内存超过设置的最大内存时,会触发redis的key淘汰机制,在redis3.0中的6中淘汰策略如下: (1)noeviction :不删除策略.当达到最大内存限制时,如果需要使用更多 ...
- 在这个应用中,我使用了 MQ 来处理异步流程、Redis 缓存热点数据、MySQL 持久化数据,还有就是在系统中调用另外一个业务系统的接口,对我的应用来说这些都是属于 RPC 调用,而 MQ、MySQL 持久化的数据也会存在于一个分布式文件系统中,他们之间的调用也是需要用 RPC 来完成数据交互的。
在这个应用中,我使用了 MQ 来处理异步流程.Redis 缓存热点数据.MySQL 持久化数据,还有就是在系统中调用另外一个业务系统的接口,对我的应用来说这些都是属于 RPC 调用,而 MQ.MySQ ...
- 如何保证redis中存放的都是热点数据
当redis使用的内存超过了设置的最大内存时,会触发redis的key淘汰机制,在redis 3.0中有6种淘汰策略: noeviction: 不删除策略.当达到最大内存限制时, 如果需要使用更多内存 ...
- 淘宝在hbase中的应用和优化
本文来自于NoSQLFan联合作者@koven2049,他在淘宝从事Hadoop及HBase相关的应用和优化. 对Hadoop.HBase都有深入的了解,本文就是其在工作中对HBase的应用优化小结, ...
- 飞流直下的精彩 -- 淘宝UWP中瀑布流列表的实现
在淘宝UWP中,搜索结果列表是用户了解宝贝的重要一环,其中的图片效果对吸引用户点击搜索结果,查看宝贝详情有比较大的影响.为此手机淘宝特意在搜索结果列表上采用了2种表现方式:一种就是普通的列表模式,而另 ...
- 从Hadoop框架与MapReduce模式中谈海量数据处理(含淘宝技术架构) (转)
转自:http://blog.csdn.net/v_july_v/article/details/6704077 从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到 ...
- (转)淘宝系统信息采集和监控工具tsar
淘宝系统信息采集和监控工具tsar 项目地址:https://github.com/alibaba/tsar 一.介绍 Tsar是淘宝的系统信息采集和监测工具,主要用来收集服务器的系统信息(如cpu, ...
- “淘宝技术这十年”
"少时淘气,大时淘宝" 时势造英雄 起因eBay 易趣 在资本方面对仗,阿里想趁此崛起新项目就要求能在短时间内做出一个 个人对个人的商品交易网站(C2C)2003年4月7日-5月1 ...
- 从Hadoop骨架MapReduce在海量数据处理模式(包括淘宝技术架构)
从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,认为它们非常是神奇.而神奇的东西常能勾 ...
- Java中间件:淘宝网系统高性能利器(转)
淘宝网是亚太最大的网络零售商圈,其知名度毋庸置疑,吸引着越来越多的消费者从街头移步这里,成为其忠实粉丝.如此多的用户和交易量,也意味着海量的信息处理,其背后的IT架构的稳定性.可靠性也显得尤为重要.那 ...
随机推荐
- Springboot+Prometheus+grafana 制作自己的业务监控
目录 知识储备 系统架构 开始实现 生成业务指标 经典实现方法 自己的实现方案 引入依赖 配置文件 注册自己的指标[我这里用的是guaua格式数据] 写入指标 效果展示 配置prometheus 抓取 ...
- 路由跳转报错:Uncaught (in promise) NavigationDuplicated {_name: "NavigationDuplicated", name: "NavigationDuplicated",...
记录一个路由跳转的报错: 将换成
- SAP集成技术(十一)SAP混合集成平台
愿景 SAP产品之间实现无缝集成还需要一些时间,目前可能还存在一些技术挑战或者需要进一步的开发工作,以便在未来能够轻松地把所有SAP产品整合在一起.让SAP产品能够顺利地与非SAP的解决方案连接,这也 ...
- goland dlv在远程linux里运行代码开发,并debug调适
一.配置好ssh自动同步代码 参考下面连接: https://www.cnblogs.com/haima/p/13257524.html 二.配置devbug监听运行 GO Remote 填写配置 l ...
- golang中三种定时器的实现方式及周期定时
一.定时器的创建 golang中定时器有三种实现方式,分别是time.sleep.time.after.time.Timer 其中time.after和time.Timer需要对通道进行释放才能达到定 ...
- vscode开发uniapp
VS Code 对 TS 类型支持友好,前端开发者主流的编辑器 HbuilderX 对 TS 类型支持暂不完善,期待官方完善 工作区禁用 Vetur 插件(Vue2 插件和 Vue3 插件冲突) 工作 ...
- apisix~lua插件开发与插件注册
开发插件的步骤 在APISIX中,要自定义插件,一般需要按照以下步骤进行操作: 编写Lua脚本:首先,你需要编写Lua脚本来实现你想要的功能.可以根据APISIX提供的插件开发文档和示例进行编写. 将 ...
- Pytorch:使用Tensorboard记录训练状态
我们知道TensorBoard是Tensorflow中的一个强大的可视化工具,它可以让我们非常方便地记录训练loss波动情况.如果我们是其它深度学习框架用户(如Pytorch),而想使用TensorB ...
- GeneralUpdate .Net5 WPF、Winfrom、控制台应用自动更新组件
https://www.bilibili.com/video/BV1aX4y137dd/?vd_source=43d3e66cc2ad46bac54dfb0c6a3a0a23 GeneralUpdat ...
- liunx查看nginx 进程
ChatGPT4.0国内站点: https://www.weijiwangluo.com/talk 要查看nginx进程,可以使用以下命令: ps -ef | grep nginx 这个命令会列出当前 ...