题目

求一张有向图的最小正环(环上结点数最小)


分析

有环当且仅当 \(f[i][i]\) 为正数,

那么考虑跑 \(n\) 次 floyd 直接转移,时间复杂度为 \(O(n^4)\)

然而没必要这么做,因为这种转移具有结合律,

首先可以考虑最大的不满足上述条件的节点数加 1 即为答案。

那么可以直接处理出不超过 \(2^i\) 步的 \(f\) 数组,然后用倍增法拼凑即可


代码

#include <cstdio>
#include <cctype>
#include <cmath>
using namespace std;
const int N=311;
int n,m,mx,f[17][N][N],dp[N][N],g[N][N],ans;
int iut(){
int ans=0,f=1; char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
int max(int a,int b){return a>b?a:b;}
int main(){
n=iut(),m=iut(),mx=log(n)/log(2);
for (int t=0;t<=mx;++t)
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j) f[t][i][j]=0xcfcfcfcf;
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j) dp[i][j]=0xcfcfcfcf;
for (int i=1;i<=n;++i) f[0][i][i]=dp[i][i]=0;
for (int i=1;i<=m;++i){
int x=iut(),y=iut(),w0=iut(),w1=iut();
f[0][x][y]=w0,f[0][y][x]=w1;
}
for (int t=1;t<=mx;++t)
for (int k=1;k<=n;++k)
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
f[t][i][j]=max(f[t][i][j],f[t-1][i][k]+f[t-1][k][j]);
for (int t=mx;~t;--t){
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j) g[i][j]=0xcfcfcfcf;
for (int k=1;k<=n;++k)
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
g[i][j]=max(g[i][j],dp[i][k]+f[t][k][j]);
int flag=0;
for (int i=1;i<=n;++i)
if (g[i][i]) {flag=1; break;}
if (flag) continue;
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j) dp[i][j]=g[i][j];
ans|=1<<t;
}
if (ans>=n) printf("0");
else printf("%d",ans+1);
return 0;
}

#倍增,floyd#CF147B Smile House的更多相关文章

  1. 【CF461E】Appleman and a Game 倍增floyd

    [CF461E]Appleman and a Game 题意:你有一个字符串t(由A,B,C,D组成),你还需要构造一个长度为n的字符串s.你的对手需要用t的子串来拼出s,具体来说就是每次找一个t的子 ...

  2. 2018.11.09 bzoj4773: 负环(倍增+floyd)

    传送门 跟上一道题差不多. 考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd. 然而并没有什么单调性. 于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了. 代码: ...

  3. 2018.11.09 bzoj1706: relays 奶牛接力跑(倍增+floyd)

    传送门 倍增+floyd板子题. 先列出状态fi,j,kf_{i,j,k}fi,j,k​表示经过iii条边从jjj到kkk的最短路. 然后发现可以用fi−1,j,kf_{i-1,j,k}fi−1,j, ...

  4. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  5. BZOJ4773: 负环(倍增Floyd)

    题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...

  6. bzoj2165: 大楼(倍增floyd)

    题目大意:一个有向图,n(<=100)个点求一条长度>=m(<=10^18)的路径最少经过几条边. 一开始以为是矩乘,蓝鹅当时还没开始写,所以好像给CYC安利错了嘿嘿嘿QWQ 第一眼 ...

  7. 【BZOJ4773】负环 倍增Floyd

    [BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...

  8. 【bzoj2306】[Ctsc2011]幸福路径 倍增Floyd

    题目描述 一张n个点的有向图,每个点有一个权值.一开始从点$v_0$出发沿图中的边任意移动,移动到路径上的第$i$个点 输入 每一行中两个数之间用一个空格隔开. 输入文件第一行包含两个正整数 n,  ...

  9. 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑 离散化+倍增Floyd

    题目描述 FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100) ...

  10. 【bzoj2085】[Poi2010]Hamsters Hash+倍增Floyd

    题目描述 Tz养了一群仓鼠,他们都有英文小写的名字,现在Tz想用一个字母序列来表示他们的名字,只要他们的名字是字母序列中的一个子串就算,出现多次可以重复计算.现在Tz想好了要出现多少个名字,请你求出最 ...

随机推荐

  1. Redis集群单机环境搭建

    概述 目标:在单台物理机上搭建3主3从共6个节点的Redis集群. 版本:Redis 6.2.4 系统:Ubuntu 18.04 Desktop(IP地址:192.168.100.247) 准备工作 ...

  2. 2021-07-21 vue插槽

    说明 为什么要有插槽? 是为了方便优雅地在父组件中向子组件传递向子组件传递dom结构. 代码处理 子组件 该子组件的组件名为ChildComponent: <template> <d ...

  3. day06---基础优化之防火墙,yum源,字符集,vim补充,echo命令

    1.系统版本号 cat /etc/redhat-release hostnamectl uname -r 2.系统 时间硬件时间 date hwclock clock hwclock systohc ...

  4. Java Reactive Programming

    Java Reactive Programming 响应式编程 在 Spring Boot 中,支持了响应式编程,带来了性能和内存使用方面的优化. 详见: Spring: Blocking vs no ...

  5. Java 重写小练习

    1 package com.bytezero.inherit3; 2 3 public class CylinderTest 4 { 5 public static void main(String[ ...

  6. windows编译ZLMediaKit流媒体服务webrtc

    环境说明 ZLMediaKit编译需要的软件 visual studio 2022 cmake 3.29.0-rc2 OpenSSL 1.1.1w(不想踩坑的话安装这个版本) libsrtp 2.6. ...

  7. Codeforces Round 303 (Div. 2)C. Kefa and Park(DFS、实现)

    @ 目录 题面 链接 题意 题解 代码 总结 题面 链接 C. Kefa and Park 题意 求叶节点数量,叶节点满足,从根节点到叶节点的路径上最长连续1的长度小于m 题解 这道题目主要是实现,当 ...

  8. vue3自定义Hooks

    比较简单的小demo,直接上代码吧 ts使用defineComponent,setup()里面使用 Composition API 写法,逻辑块清晰,不用前后文查找,拒绝 spaghetti code ...

  9. 3DCAT实时云渲染助力VR虚拟现实迈向成熟

    近年来,虚拟现实(Virtual Reality, VR)技术在市场上的应用越来越广泛,虚拟现实已成为一个热门的科技话题.相关数据显示,2019年至2021年,我国虚拟现实市场规模不断扩大,从2019 ...

  10. 还在用Calendar操作Date?Java8都弃用了,还不知道它的这款强大的工具吗?

    引言 在过去的Java版本中,日期和时间的处理主要依赖于java.util.Date和java.util.Calendar类,然而随着业务系统的复杂以及技术层面的提升,这些传统的日期时间类暴露出了若干 ...