CenterNet:Corner-Center三元关键点,检测性能全面提升 | ICCV 2019
为了解决CornerNet缺乏目标内部信息的问题,提出了CenterNet使用三元组进行目标检测,包含一个中心关键点和两个角点。从实验结果来看,CenterNet相对于CornerNet只增加了少量推理时延,但带来了将近5个点的AP提升
来源:晓飞的算法工程笔记 公众号
论文: CenterNet: Keypoint Triplets for Object Detection

Introduction

CornerNet将目前常用的anchor-based目标检测转换为keypoint-based目标检测,使用角点对表示每个目标,CornerNet主要关注目标的边界信息,缺乏对目标内部信息的获取,很容易造成误检,如图1所示。为了解决这个问题,论文提出CenterNet,在角点对的基础上加入中心关键点组成三元组进行检测,既能捕捉目标的边界信息也能兼顾目标的内部信息。另外,为了更好地提取特征,论文还提出了center pooling和cascade corner pooling,分别用于更好地提取中心关键点和角点。
Baseline and Motivation
CenterNet以CornerNet为基础,为了检测角点,CornerNet分别预测左上角点和右下角点的热图。另外,为每个角点预测了embedding向量和偏移值,相同目标的角点的embedding向量距离会非常小,偏移值则是对角点进行小范围调整。最后分别选择top-k个左上角点和top-k个右下角点,根据embedding向量距离进行配对,预测框置信度为角点对的置信度均值。

论文对CornerNet的误检率进行了分析,如表1所示,大部分的误检集中在低IoU区域,有32.7%的预测结果与GT的IoU低于0.05,而小目标的误检率高达60.3%,可能的原因是CornerNet无法感知目标内部的信息,这个问题可以通过ROI池化二次分类来弥补,但是计算消耗很大。于是,论文提出高效的替代方案CenterNet,在CornerNet的角点对上再加入一个目标内部点组成三元组,以最低的成本捕捉目标的内部信息。
Object Detection as Keypoint Triplets

CenterNet的整体结构如图2所示,将每个目标表示为中心关键点和角点对。在CornerNet的基础上增加一个中心关键点的热图输出,先按CornerNet的方法获取top-k个预测框,然后使用中心关键点对预测框进行过滤和排序:
- 根据分数选择top-k个中心关键点
- 结合对应的偏移值将中心关键点映射到输入图片
- 定义每个预测框的中心区域,检查中心区域是否包含中心关键点
- 如果中心区域包含中心关键点,保留该预测框,将分数替换为三个关键点的分数均值。如果中心区域不包含中心关键点,则去除该预测框。
中心区域的大小对检测结果有直接的影响,区域过小会导致小目标召回率低,而区域过大则会导致大目标准确率低。为此,论文提出了尺寸可知(scale-aware)的中心区域,能够根据预测框的大小进行调整。定义\(tl_x\)和\(tl_y\)为预测框的左上角点坐标,\(br_x\)和\(br_y\)为预测框的右下角点坐标,\(ctl_x\)和\(ctl_y\)为中心区域的左上角点坐标,\(cbr_x\)和\(cbr_y\)分别为右下角点的坐标,四个点应满足以下关系:

\(n\)为奇数,决定中心区域的尺寸大小,论文对于尺寸小于150和大于150的预测框分别将\(n\)设为3和5。

图3展示了\(n=3\)和\(n=5\)的中心区域,根据公式1计算尺寸可知的中心区域,然后检查中心区域是否包含中心关键点。
Enriching Center and Corner Information
Center pooling
通常,目标的几何中心不一定包含重要的分辨信息,比如人最有辨识度的地方在头部,而几何中心却在人体的中间。为了解决这个问题,论文提出中心池化来提取更丰富的可辨认信息。

如图a所示,主干网络输出特征图后,在判断中心关键点时,取特征图水平方向和垂直方向的最大值之和作为分数,这样能够很好地帮助中心关键点的检测。
Cascade corner pooling

由于角点通常在目标之外,缺少目标的相关信息,CornerNet使用corner pooling来解决这个问题,如图b所示,取边界方向的最大值作为分数,但这会导致角点过于关注边界信息。

为了解决这个问题,需要让角点能够关注目标的内部,cascade corner pooling如图c所示,首先在边界方向找到最大值,然后在边界最大值处向内找到内部最大值,将两个最大值相加作为分数输出,这样角点能够同时关注边界信息和目标信息。

Center pooling和cascade corner polling可通过组合不同方向的corner pooling进行简单实现,如图5所示。需要注意,图5b为cascade top corner pooling模块,只输出左上角点在top方向值,还要加上cascade left corner pooling输出的left方向值。cascade left corner pooling的结构跟图5b类似,只是交换Top pooling和Left pooling的位置。
Training and Inference
Training
CenterNet的输入分辨率为\(511\times 511\),最后的热图大小为\(128\times 128\),完整的网络损失函数为:

\(L^{co}_{det}\)和\(L^{ce}_{det}\)为focal loss,用来训练网络检测角点和中心关键点,\(L^{co}_{pull}\)和\(L^{co}_{push}\)为角点pull损失和push损失,用来最大化和最小化embedding向量的距离,\(L^{co}_{off}\)和\(L^{ce}_{off}\)为L1损失,用来调整角点和中心点的偏移值。
Inference
测试时同时使用原图和水平翻转图片,每个图分别保留70个中心关键点、左上角点和右上关键点来预测,最后综合两个图片的结果进行Soft-nms输出。
Experiments

与SOTA目标检测方法对比。

与CornerNet的错误率优化对比。

对比实验。
CONCLUSION
为了解决CornerNet缺乏目标内部信息的问题,CenterNet使用三元组进行目标检测,包含一个中心关键点和两个角点。从实验结果来看,CenterNet相对于CornerNet只增加了少量推理时延,但带来了将近5个点的AP提升。
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

CenterNet:Corner-Center三元关键点,检测性能全面提升 | ICCV 2019的更多相关文章
- CenterNet算法笔记(目标检测论文)
论文名称:CenterNet: Keypoint Triplets for Object Detectiontection 论文链接:https://arxiv.org/abs/1904.08189 ...
- dlib人脸关键点检测的模型分析与压缩
本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...
- PCL—低层次视觉—关键点检测(NARF)
关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别.寻物联系在一起.关键点检测可以说是通往高层次视觉的重要基础.但本章节仅在低层次视觉上讨论点云处理问题,故所有 ...
- PCL—低层次视觉—关键点检测(rangeImage)
关键点又称为感兴趣的点,是低层次视觉通往高层次视觉的捷径,抑或是高层次感知对低层次处理手段的妥协. ——三维视觉关键点检测 1.关键点,线,面 关键点=特征点: 关键线=边缘: 关键面=foregro ...
- 用keras实现人脸关键点检测(2)
上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.ba ...
- keras实现简单CNN人脸关键点检测
用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow 1.4.0 h5py ...
- 『关键点检测』CPN:Cascaded Pyramid Network for Multi-Person Pose Estimation
论文连接 网络简介 face++2017年coco keypoint benchmark 数据集冠军的文章,发表于CVPR201 1 提出了一种金字塔型的串接模型,即CPN(cascaded pyr ...
- 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支
下图Github地址:Mask_RCNN Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...
- 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)
1.dlib.get_frontal_face_detector() # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...
- OpenCV实战:人脸关键点检测(FaceMark)
Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author: Amusi Date: 2018-03-20 ...
随机推荐
- 使用winhex查看FAT16格式结构
winhex介绍 winhex可以直接查看磁盘二进制信息, 可以比较直观地查看到各种文件系统格式的区别. winhex使用 查看硬盘要管理员权限, 即启动的时候要用邮件管理员权限启动 点击Tools- ...
- 端口碰撞Port Knocking和单数据包授权SPA
端口碰撞技术 Port knocking 从网络安全的角度,服务器开启的端口越多就越不安全,因此系统安全加固服务中最常用的方式,就是先关闭无用端口,再对提供服务的端口做访问控制.而作为远程管理与维护的 ...
- Java并发编程实例--15.在同步代码块中使用条件
并发编程中有个经典问题: 生产消费者问题. 我们有一个数据缓冲区,一个或多个生产者往其中存入对象,另外一个或多个消费者从中取走. 因此,该数据缓冲区是一个共享数据结构,我们需要对其添加读取同步机制,但 ...
- WinRT: 可能是 Windows 上最好用的 Native ABI 和远程调用方案
前言 Windows 自从很久以来就有一个叫做 COM 的 Native ABI.这是一套面向对象的 ABI,在此之上 Windows 基于 COM ABI 暴露了各种各样的 API,例如 Manag ...
- Flink本地模式安装和使用
Flink官方主页:https://flink.apache.org/ . 安装部署 不同版本的Flink对JDK版本要求不尽相同,需要根据具体的Flink版本要求先安装好JDK环境. 通常,在Fli ...
- Docker实践之09-高级网络配置
目录 一.Docker网络原理及默认配置 二.Docker网络定制配置参数 三.容器访问控制原理 1.容器访问外部网络 2.容器之间访问 3.访问所有端口 4.访问指定端口 5.映射容器端口到主机端口 ...
- SBI信息反馈法
https://baijiahao.baidu.com/s?id=1605128367255769158&wfr=spider&for=pc
- 看看 ChatGPT 给的前端面试题
以下是一些可能出现在中国互联网公司前端开发工程师面试中的题目: 解释一下 CSS 盒模型,并说明其中的各个部分. 请解释一下响应式设计是什么,以及你是如何实现响应式设计的. 什么是跨域资源共享(COR ...
- 硬件开发笔记(十): 硬件开发基本流程,制作一个USB转RS232的模块(九):创建CH340G/MAX232封装库sop-16并关联原理图元器件
前言 有了原理图,可以设计硬件PCB,在设计PCB之间还有一个协同优先动作,就是映射封装,原理图库的元器件我们是自己设计的.为了更好的表述封装设计过程,本文描述了CH340G和MAX232芯片封装 ...
- itertools.chain.from_iterable()将嵌套列表合并成一个
from itertools import chain a = [[1,2],[3,4]] print(chain.from_iterable(a)) # [1,2,3,4]