题目


分析

只要做到\(O(n\sqrt{n})\)的时间复杂度就可以了

考虑莫队,首先乘号就是枚举\(x\)的约数\(d\),

判断\(d\)和\(\frac{x}{d}\)是否同时出现,

再考虑差,怎样优化暴力,考虑bitset,将其左移\(x\)位,

再与原bitset按位与,若有公共的1即为是

那和怎么办,\(a+b=x\)那不就是\(a-(-b)=x\)吗,把\(-b\)扔进bitset就可以了

由于bitset里不能放负数所以要下标整体左移\(n\)位


代码

#include <cstdio>
#include <cctype>
#include <bitset>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011; bitset<N>uk,ku;
struct five{int opt,l,r,x,rk;}q[N];
int kuai[N],Sqrt[N],a[N],ans[N],n,Q,CNT[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
bool cmp(five a,five b){
if (kuai[a.l]^kuai[b.l]) return a.l<b.l;
if (kuai[a.r]^kuai[b.r]) return kuai[a.l]&1?a.r<b.r:a.r>b.r;
return (kuai[a.l]^kuai[a.r])&1?a.x<b.x:a.x>b.x;
}
inline void add(int now){if (++CNT[now]==1) uk[now]=ku[n-now]=1;}
inline void del(int now){if (--CNT[now]==0) uk[now]=ku[n-now]=0;}
signed main(){
n=iut(); Q=iut();
for (rr int i=1;i<317;++i) Sqrt[i*i]=i;
for (rr int i=1;i<N;++i) if (!Sqrt[i]) Sqrt[i]=Sqrt[i-1];
for (rr int i=1;i<=n;++i) a[i]=iut(),kuai[i]=(i-1)/Sqrt[(n+Q)>>1]+1;
for (rr int i=1;i<=Q;++i) q[i]=(five){iut(),iut(),iut(),iut(),i};
sort(q+1,q+1+Q,cmp);
for (rr int i=1,L=q[1].l,R=L-1;i<=Q;++i){
while (L>q[i].l) add(a[--L]);
while (L<q[i].l) del(a[L++]);
while (R>q[i].r) del(a[R--]);
while (R<q[i].r) add(a[++R]);
switch (q[i].opt){
case 1:ans[q[i].rk]=(uk&(uk<<q[i].x)).any(); break;
case 2:ans[q[i].rk]=(uk&(ku>>(n-q[i].x))).any(); break;
case 3:{
for (rr int j=1;j<=Sqrt[q[i].x];++j)
if (q[i].x%j==0&&uk[j]&&uk[q[i].x/j]){
ans[q[i].rk]=1; break;
}
break;
}
}
}
for (rr int i=1;i<=Q;++i)
if (ans[i]) printf("hana\n");
else printf("bi\n");
return 0;
}

#莫队,bitset#洛谷 3674 小清新人渣的本愿的更多相关文章

  1. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  2. 洛谷P3674 小清新人渣的本愿(莫队)

    传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...

  3. 洛谷P3674 小清新人渣的本愿

    题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...

  4. 洛谷 P3674 小清新人渣的本愿

    想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...

  5. [Luogu 3674]小清新人渣的本愿

    Description 题库链接 给你一个序列 \(A\) ,长度为 \(n\) ,有 \(m\) 次操作,每次询问一个区间是否可以 选出两个数它们的差为 \(x\) : 选出两个数它们的和为 \(x ...

  6. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

  7. P3674 小清新人渣的本愿

    P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...

  8. LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田

    题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...

  9. P3674 小清新人渣的本愿 莫队+bitset

    ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...

  10. 【洛谷 P3674】 小清新人渣的本愿(bitset,莫队)

    题目链接 因为每个数都是\(10^5\)以内,考虑直接用\(bitset\)维护. \(a-b=x\),其实就是看是否有\(p\)和\(p+x\)同时存在,直接\(bitset\)移位按位与一下就好了 ...

随机推荐

  1. win终端利器-Cmder的安装使用

    cmder 官网:https://cmder.app/ 安装 直接选择full版本下载,完成后解压即可 启动 直接双击Cmder.exe 如果每次都进入到 Cmder 解压目录双击 Cmder.exe ...

  2. 【Azure 存储服务】如何查看Storage Account的删除记录,有没有接口可以下载近1天删除的Blob文件信息呢?

    问题描述 如何查看Storage Account的删除记录,有没有接口可以下载近1天删除的Blob文件信息呢?因为有时候出现误操作删除了某些Blob文件,想通过查看删除日志来定位被删除的文件信息. 问 ...

  3. 【Azure 媒体服务】记录使用Java调用Media Service API时候遇见的一些问题

    问题一:java.lang.IllegalArgumentException: Parameter this.client.subscriptionId() is required and canno ...

  4. 【应用服务 App Service】App Service For Linux 中如何挂载一个共享文件夹呢? Mount Azure Storage Account File Share

    问题描述 使用Linux作为服务器运行Web App时,如何将 Storage Account 作为本地共享装载到 App Service for  Linux / Container 中的应用呢? ...

  5. FeignClient 报错: A bean with that name has already been defined and overriding is disabled.

    1. 错误信息 *************************** APPLICATION FAILED TO START *************************** Descript ...

  6. C++ //string字符串拼接

    1 //string字符串拼接 2 #include <iostream> 3 #include<string> 4 5 using namespace std; 6 7 8 ...

  7. apt-get upgrade 和apt-get dist-upgrade区别

    kali  linux系统或者 debian等系统 以及centos  在系统升级后经常会出现系统无法启动,或者启动之后GUI功能没有的问题: 笔记:   区别这两种用法 apt-get update ...

  8. 获取一段时间内,以月/季度为单位,第N天在各个月/季度是几几年几月几号

    /** * 获取一段时间内(可跨年),以季度为单位,第N天在各个季度是几月几号 * @param $sTime 时间戳 * @param $eTime 时间戳 * @param $number 第N天 ...

  9. 树形dp套路

    我们知道dp也就是动态规划的思想就是先解决小问题,通过不断的解决小问题,最终解决大问题.那么能够应用树形dp套路的题目都应该符合一个条件,那就是通过解决每个子树的小问题,最终解决整棵树的大问题. 套路 ...

  10. 那些年,我的Mysql学习之旅(学习笔记持续整理更新中)

    MySql海量数据存储与优化 一.Mysql架构原理和存储机制 1.体系结构 2.查询缓存 3.存储引擎 存储引擎的分类 innodb:支持事务,具有支持回滚,提交,崩溃恢复等功能,事务安全 myis ...