ElasticSearch之cat anomaly detectors API
curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
执行结果输出如下:
curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
id state data.processed_records model.bytes model.memory_status forecasts.total buckets.count
查看帮助,命令如下:
curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&help=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
执行结果输出如下:
id | | the job_id
state | s | the job state
opened_time | ot | the amount of time the job has been opened
assignment_explanation | ae | why the job is or is not assigned to a node
data.processed_records | dpr,dataProcessedRecords | number of processed records
data.processed_fields | dpf,dataProcessedFields | number of processed fields
data.input_bytes | dib,dataInputBytes | total input bytes
data.input_records | dir,dataInputRecords | total record count
data.input_fields | dif,dataInputFields | total field count
data.invalid_dates | did,dataInvalidDates | number of records with invalid dates
data.missing_fields | dmf,dataMissingFields | number of records with missing fields
data.out_of_order_timestamps | doot,dataOutOfOrderTimestamps | number of records handled out of order
data.empty_buckets | deb,dataEmptyBuckets | number of empty buckets
data.sparse_buckets | dsb,dataSparseBuckets | number of sparse buckets
data.buckets | db,dataBuckets | total bucket count
data.earliest_record | der,dataEarliestRecord | earliest record time
data.latest_record | dlr,dataLatestRecord | latest record time
data.last | dl,dataLast | last time data was seen
data.last_empty_bucket | dleb,dataLastEmptyBucket | last time an empty bucket occurred
data.last_sparse_bucket | dlsb,dataLastSparseBucket | last time a sparse bucket occurred
model.bytes | mb,modelBytes | model size
model.memory_status | mms,modelMemoryStatus | current memory status
model.bytes_exceeded | mbe,modelBytesExceeded | how much the model has exceeded the limit
model.memory_limit | mml,modelMemoryLimit | model memory limit
model.by_fields | mbf,modelByFields | count of 'by' fields
model.over_fields | mof,modelOverFields | count of 'over' fields
model.partition_fields | mpf,modelPartitionFields | count of 'partition' fields
model.bucket_allocation_failures | mbaf,modelBucketAllocationFailures | number of bucket allocation failures
model.categorization_status | mcs,modelCategorizationStatus | current categorization status
model.categorized_doc_count | mcdc,modelCategorizedDocCount | count of categorized documents
model.total_category_count | mtcc,modelTotalCategoryCount | count of categories
model.frequent_category_count | mfcc,modelFrequentCategoryCount | count of frequent categories
model.rare_category_count | mrcc,modelRareCategoryCount | count of rare categories
model.dead_category_count | mdcc,modelDeadCategoryCount | count of dead categories
model.failed_category_count | mfcc,modelFailedCategoryCount | count of failed categories
model.log_time | mlt,modelLogTime | when the model stats were gathered
model.timestamp | mt,modelTimestamp | the time of the last record when the model stats were gathered
forecasts.total | ft,forecastsTotal | total number of forecasts
forecasts.memory.min | fmmin,forecastsMemoryMin | minimum memory used by forecasts
forecasts.memory.max | fmmax,forecastsMemoryMax | maximum memory used by forecasts
forecasts.memory.avg | fmavg,forecastsMemoryAvg | average memory used by forecasts
forecasts.memory.total | fmt,forecastsMemoryTotal | total memory used by all forecasts
forecasts.records.min | frmin,forecastsRecordsMin | minimum record count for forecasts
forecasts.records.max | frmax,forecastsRecordsMax | maximum record count for forecasts
forecasts.records.avg | fravg,forecastsRecordsAvg | average record count for forecasts
forecasts.records.total | frt,forecastsRecordsTotal | total record count for all forecasts
forecasts.time.min | ftmin,forecastsTimeMin | minimum runtime for forecasts
forecasts.time.max | ftmax,forecastsTimeMax | maximum run time for forecasts
forecasts.time.avg | ftavg,forecastsTimeAvg | average runtime for all forecasts (milliseconds)
forecasts.time.total | ftt,forecastsTimeTotal | total runtime for all forecasts
node.id | ni,nodeId | id of the assigned node
node.name | nn,nodeName | name of the assigned node
node.ephemeral_id | ne,nodeEphemeralId | ephemeral id of the assigned node
node.address | na,nodeAddress | network address of the assigned node
buckets.count | bc,bucketsCount | bucket count
buckets.time.total | btt,bucketsTimeTotal | total bucket processing time
buckets.time.min | btmin,bucketsTimeMin | minimum bucket processing time
buckets.time.max | btmax,bucketsTimeMax | maximum bucket processing time
buckets.time.exp_avg | btea,bucketsTimeExpAvg | exponential average bucket processing time (milliseconds)
buckets.time.exp_avg_hour | bteah,bucketsTimeExpAvgHour | exponential average bucket processing time by hour (milliseconds)
相关资料
ElasticSearch之cat anomaly detectors API的更多相关文章
- Elasticsearch利用cat api快速查看集群状态、内存、磁盘使用情况
使用场景 当Elasticsearch集群中有节点挂掉,我们可以去查看集群的日志信息查找错误,不过在查找错误日志之前,我们可以通过elasticsearch的cat api简单判断下各个节点的状态,包 ...
- elasticsearch【cat API,系统数据】指令汇总
本博文讲述的ES获取系统数据的API是基于Elasticsearch 2.4.1版本的. 0. overview a. 下面将要介绍的所有的指令,都支持一个查询参数v(verbose),用来显示详细的 ...
- ElasticSearch 5.0.1 java API操作
今天来说下使用ES 5.0.1的API来进行编码. 开始之前,简单说下5.0.1跟之前的几个变化.之前的ES自身是不支持delete-by-query的,也就是通过查询来删除,可以达到批量的效果,是因 ...
- elasticsearch基本操作之--java基本操作 api
/** * 系统环境: vm12 下的centos 7.2 * 当前安装版本: elasticsearch-2.4.0.tar.gz */ 默认进行了elasticsearch安装和ik安装, 超时配 ...
- ES 19 - Elasticsearch的检索语法(_search API的使用)
目录 1 Search API的基本用法 1.1 查询所有数据 1.2 响应信息说明 1.3 timeout超时机制 1.4 查询多索引和多类型中的数据 2 URI Search的用法 2.1 GET ...
- 【原创】大数据基础之ElasticSearch(2)常用API整理
Fortunately, Elasticsearch provides a very comprehensive and powerful REST API that you can use to i ...
- Elasticsearch 2.3.3 JAVA api说明文档
原文地址:https://www.blog-china.cn/template\documentHtml\1484101683485.html 翻译作者:@青山常在人不老 加入翻译:cdcnsuper ...
- mysql转ElasticSearch的分析 及JAVA API 初探
前言 最近工作中在进行一些技术优化,为了减少对数据库的压力,对于只读操作,在程序与db之间加了一层-ElasticSearch.具体实现是db与es通过bin-log进行同步,保证数据一致性,代码调用 ...
- 可以执行全文搜索的原因 Elasticsearch full-text search Kibana RESTful API with JSON over HTTP elasticsearch_action es 模糊查询
https://www.elastic.co/guide/en/elasticsearch/guide/current/getting-started.html Elasticsearch is a ...
- ElasticSearch之安装及基本操作API
ElasticSearch 是目前非常流行的搜索引擎,对海量数据搜索是非常友好,并且在高并发场景下,也能发挥出稳定,快速特点.也是大数据和索搜服务的开发人员所极力追捧的中间件.虽然 ElasticSe ...
随机推荐
- 在微服务环境下,远程调用feign和异步线程存在请求数据丢失问题
一.无异步线程得情况下feign远程调用: 0.登录拦截器: @Component public class LoginUserInterceptor implements HandlerInterc ...
- Nginx map 实现时间格式转换
哈喽大家好,我是咸鱼 最近我们需要把 Nginx 的日志接入到自研的日志采集平台上,但是这个平台只支持 JSON 格式,所以需要把 Nginx 日志格式改成 JSON 格式 例如下面这样的效果 刚开始 ...
- 利用python将数据写入CSV文件中
利用python将数据写入CSV文件中 全部代码如下: import csv # 1.创建文件对象 f = open('cav_file.csv', 'w', encoding='utf-8', ne ...
- 洛谷题解 | P1051 谁拿了最多奖学金
目录 题目描述 输入格式 输出格式 输入输出样例 提示 题目思路 AC代码 题目描述 某校的惯例是在每学期的期末考试之后发放奖学金.发放的奖学金共有五种,获取的条件各自不同: 1. 院士奖学金,每人 ...
- getchar()和putchar()
#include <stdio.h> #include <stdlib.h> int main() { char ch; /*.putchar() a. putchar函数的格 ...
- Linux下安装MySQL问题及报错解决
前言: 在Linux环境下,安装MySQL服务 环境: 虚拟机CentOS7 \-----------------------------------------------\ 流程: 确保mysql ...
- jenkins实践篇(1)——基于分支的自动发布
问题背景 想起初来公司时,我们还是在发布机上直接执行发布脚本来运行和部署服务,并且正式环境和测试环境的脚本都在一起,直接手动操作脚本时存在比较大的风险就是将环境部署错误,并且当时脚本部署逻辑还没有检测 ...
- Facade 外观模式简介与 C# 示例【结构型5】【设计模式来了_10】
〇.简介 1.什么是外观模式? 一句话解释: 将一系列需要一起进行的操作,封装到一个类中,通过对某一个方法的调用,自动完成一系列操作. 外观模式是一种简单而又实用的设计模式,它的目的是提供一个统一 ...
- k8s Rabbitmq安装部署
安装方式 kubectl apply -f rabbitmq.yaml -n yunda-dev-cache rabbitmq.yaml ##创建PV # 注意更换存储方式 --- apiVersio ...
- Neural Networks投稿要求总结
自用,NN投稿要求,相关的部分的中文版翻译,原文链接:https://www.sciencedirect.com/journal/neural-networks/publish/guide-for-a ...