system-design-primer

关键词:分布式、高并发、系统设计、面试


看腻了互联网上零碎、纷繁的面试题目?

来看看这个仓库吧,他系统介绍了对于大型系统的设计问题,并为系统设计面试做准备。

仓库地址:Gitee Github

项目简介

这个项目旨在帮助开发者学习如何设计大型系统,并为系统设计面试做准备。它包含了一系列的资源,包括但不限于:

  1. 动机:学习如何设计可扩展的系统,以及如何从开源社区中学习。
  2. 面试准备:提供了常见的系统设计面试问题及其解决方案,以及如何使用 Anki 记忆卡片来巩固关键概念。
  3. 系统设计主题:涵盖了各种系统设计主题的概述,包括性能与可扩展性、延迟与吞吐量、可用性与一致性等。
  4. 学习指南:根据面试时间线(短期、中期、长期)提供了建议的复习主题。
  5. 面试问题处理方法:提供了一个结构化的步骤来处理系统设计面试问题,包括概述用例、约束和假设,创建高层次设计,设计核心组件,以及扩展设计。
  6. 系统设计面试问题与解决方案:提供了一些常见的系统设计问题,如设计 Pastebin.com、设计 Twitter 时间线和搜索、设计 Web 爬虫等,并提供了解决方案。
  7. 面向对象设计面试问题与解决方案:提供了一些面向对象设计的面试问题,如设计哈希表、设计最近最少使用(LRU)缓存等。
  8. 系统设计主题入门:提供了一些基础的系统设计概念,如可扩展性讲座、可扩展性文章等。
  9. 性能与可扩展性:讨论了服务的可扩展性,以及如何在资源增加时保持性能增长。
  10. 可用性与一致性:探讨了 CAP 定理,以及在分布式系统中如何在一致性和可用性之间做出权衡。
  11. 一致性模式:介绍了弱一致性、最终一致性和强一致性的概念。
  12. 可用性模式:讨论了故障转移(fail-over)和复制(replication)模式,以及它们的优缺点。
  13. 数据库:介绍了关系数据库管理系统(RDBMS)的基本概念,如主从复制、主主复制、联合(federation)、分片(sharding)和去规范化(denormalization)。
  14. NoSQL:介绍了 NoSQL 数据库的类型,包括键值存储、文档存储、宽列存储和图数据库。
  15. 缓存:讨论了缓存的重要性,以及如何在不同层次上实现缓存,如客户端缓存、CDN 缓存、Web 服务器缓存和应用缓存。
  16. 异步处理:介绍了消息队列和任务队列的概念,以及如何使用它们来处理耗时操作。
  17. 通信:讨论了 HTTP、TCP 和 UDP 协议,以及远程过程调用(RPC)和表示性状态转移(REST)架构风格。
  18. 安全性:提供了一些基本的安全建议,如加密、输入清理和最小权限原则。
  19. 附录:提供了一些有用的参考信息,如二的幂表和程序员应该知道的延迟数字。

此外,项目还提供了一些额外的系统设计面试问题、真实世界的架构案例、公司架构和工程博客的链接,以及一些正在开发中的主题。项目鼓励社区贡献,欢迎提交拉取请求来改进或添加新的内容。

在设计大型系统时,如何平衡性能、可扩展性和延迟?

在设计大型系统时,平衡性能、可扩展性和延迟是一个复杂且关键的任务,因为这三者之间往往存在权衡关系。以下是一些策略和最佳实践,可以帮助在设计时取得平衡:

  1. 理解业务需求

    • 在设计之初,明确系统的关键性能指标(KPIs),如响应时间、吞吐量、并发用户数等。
    • 确定业务的可扩展性需求,包括预期的用户增长、数据增长和功能扩展。
  2. 分层架构

    • 使用分层架构来分离关注点,例如将数据访问层、业务逻辑层和表示层分开。
    • 这有助于在不影响其他层的情况下,对特定层进行优化。
  3. 缓存策略

    • 使用缓存来减少数据库访问,提高响应速度,降低延迟。
    • 实现多级缓存,如内存缓存、CDN缓存和持久化缓存。
  4. 负载均衡

    • 使用负载均衡器分散请求到多个服务器,提高系统的吞吐量和可用性。
    • 实现水平扩展,通过增加更多的服务器来提高性能和可扩展性。
  5. 异步处理

    • 对于耗时的操作,如数据处理和通知,采用异步处理来避免阻塞主线程,从而降低延迟。
  6. 数据库优化

    • 选择合适的数据库类型(SQL 或 NoSQL)以及适当的数据模型。
    • 实施数据库分片、索引优化和查询优化来提高性能。
  7. 服务拆分

    • 采用微服务架构,将大型应用拆分为多个独立的服务,每个服务负责特定的业务功能。
    • 这有助于独立扩展各个服务,提高整体系统的可扩展性。
  8. 并发和并行处理

    • 利用多线程或多进程来并行处理任务,提高系统的处理能力。
    • 在数据库操作中使用批量处理和事务批处理来减少I/O操作次数。
  9. 性能测试和监控

    • 定期进行性能测试,确保系统在高负载下仍能满足性能要求。
    • 实施实时监控和日志记录,以便快速定位和解决问题。
  10. 弹性设计

    • 设计系统时考虑故障恢复和灾难恢复策略,确保系统在部分组件失败时仍能保持运行。
  11. 用户反馈

    • 收集用户反馈,了解他们对性能和延迟的敏感度,根据反馈调整优化策略。
  12. 持续优化

    • 系统设计不是一次性的任务,而是持续的过程。随着业务的发展和技术的进步,不断评估和优化系统架构。

通过上述策略,可以在设计大型系统时实现性能、可扩展性和延迟之间的平衡。然而,这通常需要在实际应用中不断调整和优化,以适应不断变化的业务需求和技术环境。

在设计大型系统时,如何确保系统的安全性和数据保护?

在设计大型系统时,确保系统的安全性和数据保护是至关重要的。以下是一些关键的步骤和最佳实践,可以帮助实现这一目标:

  1. 安全需求分析

    • 在系统设计之初,识别潜在的安全威胁和风险,并根据业务需求定义安全目标。
    • 了解数据的敏感性,并根据数据的重要性和敏感性级别制定相应的保护措施。
  2. 数据加密

    • 对存储和传输的数据进行加密,确保即使在数据泄露的情况下,也无法轻易被解读。
    • 使用强加密算法,并定期更新密钥。
  3. 身份验证和授权

    • 实施强大的身份验证机制,如多因素认证,确保只有授权用户才能访问系统。
    • 使用角色基础的访问控制(RBAC)或属性基础的访问控制(ABAC)来限制用户对资源的访问。
  4. 输入验证和清理

    • 对所有用户输入进行严格的验证,防止注入攻击(如SQL注入)和跨站脚本(XSS)攻击。
    • 使用白名单验证和参数化查询来确保输入的合法性。
  5. 安全编码实践

    • 遵循安全编码标准,如OWASP Top 10,避免常见的安全漏洞。
    • 对开发者进行安全培训,提高他们对安全问题的认识。
  6. 安全配置和补丁管理

    • 确保系统和依赖的软件都配置得当,关闭不必要的服务和端口。
    • 定期更新系统和应用程序,及时应用安全补丁。
  7. 网络隔离和防火墙

    • 使用网络隔离技术,如虚拟私有网络(VPN)和防火墙,来保护系统不受未经授权的访问。
    • 对进出系统的数据流进行监控和过滤。
  8. 审计和日志记录

    • 实施全面的审计策略,记录所有关键操作和事件。
    • 定期审查日志,以便在发生安全事件时进行调查。
  9. 灾难恢复计划

    • 设计并实施灾难恢复计划,包括数据备份和恢复策略。
    • 定期进行恢复测试,确保在紧急情况下能够迅速恢复系统。
  10. 合规性和标准

    • 确保系统设计符合相关的法律、法规和行业标准,如GDPR、HIPAA等。
    • 进行定期的安全审计,以评估系统的合规性。
  11. 安全测试

    • 在开发过程中进行安全测试,包括静态代码分析、动态扫描和渗透测试。
    • 在系统上线前和上线后定期进行安全评估。
  12. 安全文化和意识

    • 在组织内部建立安全文化,提高员工对安全问题的认识。
    • 鼓励员工报告安全问题,并为安全贡献提供奖励。

通过上述措施,可以在设计和实施大型系统时,有效地保护系统和数据的安全。然而,安全性是一个持续的过程,需要不断地评估新的威胁、更新安全策略,并适应技术的变化。


以上内容由kimi产出。想继续向kimi提问?请点击如下链接

system-design-primer 系统设计面试题的更多相关文章

  1. 上周 GitHub 热点速览 vol.08:系统设计必看 The System Design Primer

    作者:HelloGitHub-小鱼干 摘要:GitHub Trending 上周看点,老项目依旧抢眼,系统设计必看 Repo:The System Design Primer 周获 1k+ star, ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  3. UVA 11400 Lighting System Design 照明系统设计

    首先是一个贪心,一种灯泡要么全都换,要么全都不换. 先排序,定义状态d[i]为前面i种灯泡的最小花费,状态转移就是从d[j],j<i,加上 i前面的j+1到i-1种灯泡换成i的花费. 下标排序玩 ...

  4. Machine Learning - XI. Machine Learning System Design机器学习系统的设计(Week 6)

    http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 ...

  5. 【系统设计】论文总结之:Butler W. Lampson. Hints for computer system design

    Butler W. Lampson. Hints for computer system design. ACM Operating Systems Rev. 15, 5 (Oct. 1983), p ...

  6. Machine Learning - 第6周(Advice for Applying Machine Learning、Machine Learning System Design)

    In Week 6, you will be learning about systematically improving your learning algorithm. The videos f ...

  7. How to prepare system design questions in a tech interview?

    http://blog.baozitraining.org/2014/09/how-to-prepare-system-design-questions.html 如何准备面试中的系统设计问题一直都是 ...

  8. Stanford机器学习笔记-7. Machine Learning System Design

    7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to W ...

  9. Microchip 125 kHz RFID System Design Guide

    Passive RFID Basics - AN680 INTRODUCTION Radio Frequency Identification (RFID) systems use radio fre ...

  10. 【线性结构上的动态规划】UVa 11400 - Lighting System Design

    Problem F Lighting System Design Input: Standard Input Output: Standard Output You are given the tas ...

随机推荐

  1. YiGo学习(一)YiGo介绍

    YiGo是一种开发语言,是一种面向业务人员进行管理信息系统开发的特定领域语言,属于第五代计算机语言.它可以在图形化界面上进行选择.拖拽等动作进行管理业务建模,通过建立对系统需求的描述模型由计算机自动生 ...

  2. ShardingSphere

    目录 1.ShardingSphere分表与分库分表 2.ShardingSphere分库分表查询 3.自定义分片算法实现range查询 4.SPI扩展机制概述 5.stand通过SPI实现range ...

  3. 4.5 MinHook 挂钩技术

    MinHook是一个轻量级的Hooking库,可以在运行时劫持函数调用.它支持钩子API函数和普通函数,并且可以运行在32位和64位Windows操作系统上.其特点包括易于使用.高性能和低内存占用.M ...

  4. Rsync+Inotify 实现数据同步

    Rsync 是UNIX及类UNIX-Like平台下一款强大的数据镜像备份软件,它不像FTP或其他文件传输服务那样需要进行全备份,Rsync 可以根据数据的变化进行差异备份,从而减少数据流量,提高工作效 ...

  5. Hadoop超详细讲解之单节点搭建

    1 Hadoop介绍 Hadoop是Apache旗下的一个用java语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台.允许使用简单的编程模型在大量计算机集群上对大型数据集进行分布式处理. ...

  6. 【scikit-learn基础】--『回归模型评估』之损失分析

    分类模型评估中,通过各类损失(loss)函数的分析,可以衡量模型预测结果与真实值之间的差异.不同的损失函数可用于不同类型的分类问题,以便更好地评估模型的性能. 本篇将介绍分类模型评估中常用的几种损失计 ...

  7. .NET 云原生架构师训练营(模块二 基础巩固 MVC终结点)--学习笔记

    2.3.4 Web API -- MVC终结点 MVC与MVVM 模型绑定 自定义模型绑定器 模型验证 返回数据处理 MVC与MVVM MVC ASP.NET Core MVC 概述:https:// ...

  8. Linux-ln命令创建链接(软连接/硬链接)

    1.ln命令介绍 ln命令可以看作是 link 的缩写,其功能是创建文件间的链接,链接类型包括硬链接(hard link)和软链接(符号链接,symbolic link) 2.ln命令格式 ln 命令 ...

  9. 借助 .NET 开源库 Sdcb.DashScope 调用阿里云灵积通义千问 API

    在昨天的博文中,我们通过 Semantic Kernel 调用了自己部署的通义千问开源大模型,但是自己部署通义千问对服务器的配置要求很高,即使使用抢占式按量实例,每次使用时启动服务器,使用完关闭服务器 ...

  10. NC51189 Mondriaan's Dream

    题目链接 题目 题目描述 Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, a ...