红黑树是什么?怎么实现?应用场景

  红黑树(Red-Black Tree,简称R-B Tree),它一种特殊的二叉树。 意味着它满足二叉查找树的特征:任意一个节点所包含的键值,大于等于左孩子的键值,小于等于右孩子的键值。 除了具备该特性之外,红黑树还包括许多额外的信息。

  红黑树的特性: 红黑树是特殊的AVL树(二叉平衡树),设计红黑树的目的,就是解决平衡树的维护起来比较麻烦的问题,红黑树,读取略逊于AVL,维护强于AVL,每次插入和删除的平均旋转次数应该是远小于平衡树。。

红定理:不会有连续的红色节点 。黑定理:根节点必须是黑节点,所有叶子节点都是黑色。

性质1:每个节点要么是黑色,要么是红色。
性质2:根节点是黑色。
性质3:每个叶子节点(NIL)是黑色。
性质4:每个红色结点的两个子结点一定都是黑色。
性质5:任意一结点到每个叶子结点的路径都包含数量相同的黑结点。

基本操作是添加、删除和旋转。在对红黑树进行添加或删除后,会用到旋转方法。旋转的目的是让树保持红黑树的特性。旋转包括两种:左旋 和 右旋;

红黑树的应用比较广泛,主要是用它来存储有序的数据,它的查找、插入和删除操作的时间复杂度是O;

红黑树实际应用:

IO多路复用的实现采用红黑树组织管理,以支持快速的增删改查.
ngnix中,用红黑树管理timer,因为红黑树是有序的,可以很快的得到距离当前最小的定时器.
java中TreeMap,jdk1.8的hashmap的实现.

红黑树 和 b+树的用途有什么区别?
  1. 红黑树多用在内部排序,即全放在内存中的,java的map和set的内部实现就是红黑树。

  2. B+树多用于外存上时,B+也被成为一个磁盘友好的数据结构。

B+树:

B+ 树是一种树数据结构,是一个特殊的二叉树,每个节点通常有多个子节点,一棵B+树包含根节点、内部节点和叶子节点。根节点可能是一个叶子节点,也可能是一个包含两个或两个以上孩子节点的节点。

    • 非叶结点仅具有索引作用,跟记录有关的信息均存放在叶结点中。
    • 树的所有叶结点构成一个有序链表,可以按照关键码排序的次序遍历全部记录,便于区间查找和遍历。
    • B+ 树的优点在于:由于B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。因此访问叶子节点上关联的数据也具有更好的缓存命中率。B+树的叶子结点都是相连的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。
    • 而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。下面是B 树和B+树的区别图:
    • 如图所示,区别有以下两点:

      1. B+树中只有叶子节点会带有指向记录的指针,而B树则所有节点都带有,在内部节点出现的索引项不会再出现在叶子节点中。
      2. B+树中所有叶子节点都是通过指针连接在一起,而B树不会。

B+树 的优点:

  1. 非叶子节点不会带上指向记录的指针,这样,一个块中可以容纳更多的索引项,一是可以降低树的高度。二是一个内部节点可以定位更多的叶子节点。
  2. 叶子节点之间通过指针来连接,范围扫描将十分简单,而对于B树来说,则需要在叶子节点和内部节点不停的往返移动。具体的来讲,如何想扫描一次所有数据,对于b+树来说,可以从因为他们的叶子结点是连在一起的,所以可以横向的遍历过去。而对于b-树来说,就这能中序遍历了。

B树 的优点:
对于在内部节点的数据,可直接得到,不必根据叶子节点来定位。

b+树的应用场景:

B/B+树是为了磁盘或其它存储设备而设计的一种平衡多路查找树,适用于数据库存储数据.
二叉查找树的结构不适合数据库,因为它的查找效率与层数相关。越处在下层的数据,就需要越多次比较。

为什么b+磁盘友好?

  1. 磁盘读写代价更低

    树的非叶子结点里面没有数据,这样索引比较小,可以放在一个blcok(或者尽可能少的blcok)里面。避免了树形结构不断的向下查找,然后磁盘不停的寻道,读数据。这样的设计,可以降低io的次数。

  2. 查询效率更加稳定

    非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

  3. 遍历所有的数据更方便

    B+树只要遍历叶子节点就可以实现整棵树的遍历,而其他的树形结构 要中序遍历才可以访问所有的数据。

红黑树是什么?红黑树 与 B+树区别和应用场景?的更多相关文章

  1. 1.红黑树和自平衡二叉(查找)树区别 2.红黑树与B树的区别

    1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡 ...

  2. 为什么Myeclipse 提示Project 'bankmanager' is missing required library,myeclipse项目上红叉 但内部红叉

    应该是正在使用的项目是从网上下的或者别人那里直接拷贝导致的,解决办法: 下一个mysql-connector-java-5.1.22-bin.jar或者是最新版,最好放项目目录里 右键点项目,Buil ...

  3. 使用了@Slf4j log没有info的方法 .info()方法爆红或者log爆红

    在springboot项目中,使用注解@Slf4j时,log变量不能用. 导包用的是 import lombok.extern.slf4j.Slf4j; <dependency> < ...

  4. 论AVL树与红黑树

    首先讲解一下AVL树: 例如,我们要输入这样一串数字,10,9,8,7,15,20这样一串数字来建立AVL树 1,首先输入10,得到一个根结点10 2,然后输入9, 得到10这个根结点一个左孩子结点9 ...

  5. Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结

    Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结 1.1. 树形结构-- 一对多的关系1 1.2. 树的相关术语: 1 1.3. 常见的树形结构 ...

  6. 算法设计和数据结构学习_5(BST&AVL&红黑树简单介绍)

    前言: 节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm analysis in c++ (second ed ...

  7. 通过分析 JDK 源代码研究 TreeMap 红黑树算法实现

    本文转载自http://www.ibm.com/developerworks/cn/java/j-lo-tree/ 目录: TreeSet 和 TreeMap 的关系 TreeMap 的添加节点 Tr ...

  8. Sedgewick的红黑树

    红黑树一直是数据结构中的难点,大部分关于算法与数据结构的学习资料(包括<算法导论>)对于这部分的讲解都是上来就下定义,告诉我们红黑树这个性质那个性质,插入删除要注意1234点,但是基本没有 ...

  9. 红黑树(二)之 C语言的实现

    概要 红黑树在日常的使用中比较常用,例如Java的TreeMap和TreeSet,C++的STL,以及Linux内核中都有用到.之前写过一篇文章专门介绍红黑树的理论知识,本文将给出红黑数的C语言的实现 ...

  10. 红黑树(四)之 C++的实现

    概要 前面分别介绍红黑树的理论知识和红黑树的C语言实现.本章是红黑树的C++实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章. 目录1. 红黑树的介绍2. 红黑树的C++ ...

随机推荐

  1. 在EXCEL表格中快速自动求和

    在Microsoft Excel中,可以通过多种方式快速自动求和.以下是一种简单但常用的方法: 使用SUM函数 选定求和区域: 在Excel表格中,首先需要选定要进行求和的区域.这可以是一个列.行或者 ...

  2. [ABC263C] Monotonically Increasing

    Notes For two integer sequences of the same length $A_1,A_2,\dots,A_N$ and $B_1,B_2,\dots,B_N$, $A$ ...

  3. Mybatis-Flex核心功能之@Column

    1.是什么? MyBatis-Flex 提供了 @Column 用来对字段进行更多的配置 public @interface Column { /** * 字段名称 */ String value() ...

  4. 华企盾DSC无缝替换亿赛通案例

    第一种方法无缝替换亿赛通案例 1. 把DSCClient.exe和DSCService.exe添加到亿赛通的加密控制策略中,关联类型设置为*.*|,配置为落地自动解密,包括其它程序也配置成落地自动解密 ...

  5. int和String的相互转换

  6. 关于helloworld

    我们的helloworld是从一个源程序开始的,该源程序由程序员通过编译器创建并保存的文件,文件名就是hello.c.这个hello.c的源程序,实际上是有0和1组成的序列.每一个0和1都成为一位,这 ...

  7. 请注意,你的 Pulsar 集群可能有删除数据的风险

    在上一篇 Pulsar3.0新功能介绍中提到,在升级到 3.0 的过程中碰到一个致命的问题,就是升级之后 topic 被删除了. 正好最近社区也补充了相关细节,本次也接着这个机会再次复盘一下,毕竟这是 ...

  8. win10安装WSL

    一.什么是WSL? Windows Subsystem for Linux 简称 WSL,是一个在Windows 10上能够运行原生Linux二进制可执行文件(ELF格式)的兼容层. 二.如何安装WS ...

  9. python 处理pdf加密文件

    近期有同事需要提取加密的pdf文件,截取其中的信息,并且重构pdf文件.网上没有搜到相关的pdf操作,于是咨询了chatgpt,给出了pypdf2的使用案例.但是时间比较久远了,很多库内的调用接口都已 ...

  10. PowerDotNet平台化软件架构设计与实现系列(17):PCRM个人用户管理平台

    个人用户管理是业务系统中非常基础且重要的一个公共服务系统,我们写的绝大多数应用都和个人用户或会员有关,用户(会员)数据安全无小事,必须有一个完备的用户管理平台系统. 因为不同公司的主业务不同,个人用户 ...