TypeChat源码分析:基于大语言模型的定制化 AI Agent 交互规范

本文深入介绍了微软最近发布的 TypeChat 项目,该项目允许开发者定义大语言模型返回的响应结构。通过分析源代码,探讨了 Prompt 的基本概念,为定制化开发互动式 AI Agent 提供便捷的解决方案。

文章着重介绍 TypeChat 的关键要素,例如集成不同的大语言模型、提高灵活性,并调整输出以适应特定场景,这对于在游戏中通过 AI Agent 实现多样交互至关重要。

在 TypeChat 中,先定义好 ChatGPT 的响应类型,即 Schema, 创建将自然语言请求翻译为特定类型的 JSON 对象的工具函数, 将函数列表和问题发送给GPT,

GPT根据函数定义,返回要执行的函数名和参数, 不同于 Function calling, 它使用 Typescript 类型来作为 Schema,要求 ChatGPT 返回符合这个类型定义的数据。

因为最近开发一个基于GPT的AI AGENT的游戏,不同的人在地图通过不断的和chatGPT定义角色的NPC聊天交互,然后从NPC那里得到不同的反馈,得到不一样的体验,对于交互的部分,我觉得 tyeChat 就可以很好的交互上的格式问题。

本文对typeChat 其中比较重要的点进行分析:

  1. 大模型对接的地方:目前只是支持了两种大模型,微软自己的Azure的和 OpenAI 的,比如还有很多的大模型如何接入的问题
  2. 灵活性的拓展:比如说目前 typeChat 对于类型的定义过于严格,可能要耗费大量的token 以及对于不需要那么严格的场景,比如聊天,只需要有几个关键的key是对的就可以了如何优化

基于 SourceCodeTrace 项目推崇的原则,本文代码块引用均有来源,SourceCodeTrace Project 帮助您在博客、文章记录的过程中,引入对应项目以及版本,行号等信息,让后续的读者,通过引用来源,能够进行更加深入的学习,在博客或文章中引入代码块时,尽量提供代码的来源信息。

核心架构

核心就是对话,校验,修复型对话,得到想要的结构。

export function createJsonTranslator<T extends object>(model: TypeChatLanguageModel, schema: string, typeName: string): TypeChatJsonTranslator<T> {
const validator = createJsonValidator<T>(schema, typeName);
const typeChat: TypeChatJsonTranslator<T> = {
model,
validator,
attemptRepair: true,
stripNulls: false,
createRequestPrompt,
createRepairPrompt,
translate
};
return typeChat;

/src/typechat.ts?#L65-L76

createJsonTranslator 函数是核心部分,它接受三个参数 model、schema 和 typeName,并返回一个包含几个方法和属性的对象 typeChat,

该对象用于将自然语言请求转换为指定类型的 JSON 对象。

  • model:是用于将自然语言请求翻译为 JSON 的大语言模型,目前是支持微软自己的Azure 和 Openai的
  • schema:是一个包含 JSON schema 的 TypeScript 源代码的字符串。
  • typeName:是在 schema 中指定的目标 JSON 类型的名称。

返回的 typeChat 对象包含以下几个属性和方法:

  • model:保存传入的语言模型。
  • validator:通过调用 createJsonValidator 函数,使用传入的 schema 和 typeName 创建一个 JSON 校验器,并将其保存在 validator 属性中。
  • attemptRepair:一个布尔值,表示在校验失败时是否尝试修复 JSON 对象。
  • stripNulls:一个布尔值,表示是否从最终的 JSON 对象中剥离空值(null)属性。
  • createRequestPrompt(request):一个函数,用于创建用户请求的 Prompt ,包含 JSON schema 和用户请求的内容。
  • createRepairPrompt(validationError):一个函数,检验格式不对的话,修复性的 Prompt ,再次请求。
  • translate(request):一个异步函数,用于将用户请求翻译为 JSON 对象。

    它使用语言模型 model 来翻译用户请求,并调用 JSON 校验器进行验证。如果验证成功,返回验证结果,否则根据 attemptRepair 的值决定是否尝试修复错误,最终返回修复后的 JSON 对象。

Prompt 的核心

    function createRequestPrompt(request: string) {
return `You are a service that translates user requests into JSON objects of type "${validator.typeName}" according to the following TypeScript definitions:\n` +
`\`\`\`\n${validator.schema}\`\`\`\n` +
`The following is a user request:\n` +
`"""\n${request}\n"""\n` +
`The following is the user request translated into a JSON object with 2 spaces of indentation and no properties with the value undefined:\n`;
}

/src/typechat.ts?#L78-L84

这里面的核心就是对 ChatGpt 做一个角色的定义, 定义 ChatGpt 作为一个处理JSON对象的服务,在一个就是 typescript 对对象类型的定义描述给 chatGpt 识别。

当 ChatGpt 回复之后,通过 validation 校验的类型错误,在给 chatGpt 说你的类型不对,具体错误是什么, 你需要在输出修改后的JSON对象:


function createRepairPrompt(validationError: string) {
return `The JSON object is invalid for the following reason:\n` +
`"""\n${validationError}\n"""\n` +
`The following is a revised JSON object:\n`;
}

/src/typechat.ts?#L85-L90

通过这样的一次反馈得到最后需要的格式, 但是这个里面如果需要足够的稳定,还需要自行修改源码添加次数,以便达到自己的预期。

增加大模型接口

目前官网里面就支持了两种,微软自己的Azure的和 OpenAI 的ChatGpt,为了探索 TypeChat 核心概念与拓展性,为游戏开发定制 AI Agent 提供便利,还是需要处理这块代码实现不同大模型的对接需求:

export function createLanguageModel(env: Record<string, string | undefined>): TypeChatLanguageModel {
if (env.OPENAI_API_KEY) {
const apiKey = env.OPENAI_API_KEY ?? missingEnvironmentVariable("OPENAI_API_KEY");
const model = env.OPENAI_MODEL ?? missingEnvironmentVariable("OPENAI_MODEL");
const endPoint = env.OPENAI_ENDPOINT ?? "https://api.openai.com/v1/chat/completions";
const org = env.OPENAI_ORGANIZATION ?? "";
return createOpenAILanguageModel(apiKey, model, endPoint, org);
}
if (env.AZURE_OPENAI_API_KEY) {
const apiKey = env.AZURE_OPENAI_API_KEY ?? missingEnvironmentVariable("AZURE_OPENAI_API_KEY");
const endPoint = env.AZURE_OPENAI_ENDPOINT ?? missingEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
return createAzureOpenAILanguageModel(apiKey, endPoint);
}
missingEnvironmentVariable("OPENAI_API_KEY or AZURE_OPENAI_API_KEY");
}

/src/model.ts?#L41-L55

这里是两个模型公用的部分,基本的请求结构差不多,定义 Prompt 和 role, 然后得到 result.data.choices[0].message?.content 返回值。

这里可以修改返回的内容,以及在这里定义每次调用请求的大模型接口,可以通过这个地方,修改为自己定义的接口以及处理自己代码的逻辑。

function createAxiosLanguageModel(url: string, config: object, defaultParams: Record<string, string>) {
const client = axios.create(config);
const model: TypeChatLanguageModel = {
complete
};
return model; async function complete(prompt: string) {
let retryCount = 0;
const retryMaxAttempts = model.retryMaxAttempts ?? 3;
const retryPauseMs = model.retryPauseMs ?? 1000;
while (true) {
const params = {
...defaultParams,
messages: [{ role: "user", content: prompt }],
temperature: 0,
n: 1
};
const result = await client.post(url, params, { validateStatus: status => true });
if (result.status === 200) {
return success(result.data.choices[0].message?.content ?? "");
}
if (!isTransientHttpError(result.status) || retryCount >= retryMaxAttempts) {
return error(`REST API error ${result.status}: ${result.statusText}`);
}
await sleep(retryPauseMs);
retryCount++;
}

/src/model.ts?#L89-L116

本文也在持续的更新中,如果你需要得到最新的更新,请访问: TypeChat源码分析:基于大语言模型的定制化 AI Agent 交互规范

TypeChat源码分析:基于大语言模型的定制化 AI Agent 交互规范的更多相关文章

  1. AtomicInteger源码分析——基于CAS的乐观锁实现

    AtomicInteger源码分析——基于CAS的乐观锁实现 1. 悲观锁与乐观锁 我们都知道,cpu是时分复用的,也就是把cpu的时间片,分配给不同的thread/process轮流执行,时间片与时 ...

  2. 并发-AtomicInteger源码分析—基于CAS的乐观锁实现

    AtomicInteger源码分析—基于CAS的乐观锁实现 参考: http://www.importnew.com/22078.html https://www.cnblogs.com/mantu/ ...

  3. HashMap 源码分析 基于jdk1.8分析

    HashMap 源码分析  基于jdk1.8分析 1:数据结构: transient Node<K,V>[] table;  //这里维护了一个 Node的数组结构: 下面看看Node的数 ...

  4. 断点调试/认证/权限/频率-源码分析/基于APIView编写分页/异常处理

    内容概要 断点调试 认证/权限/频率-源码分析 基于APIView编写分页 异常处理 断点调试 # 程序以 debug模式运行,可以在任意位置停下,查看当前情况下变量数据的变化情况 # pycharm ...

  5. Spring IoC 源码分析 (基于注解) 之 包扫描

    在上篇文章Spring IoC 源码分析 (基于注解) 一我们分析到,我们通过AnnotationConfigApplicationContext类传入一个包路径启动Spring之后,会首先初始化包扫 ...

  6. 死磕 java集合之ConcurrentSkipListSet源码分析——Set大汇总

    问题 (1)ConcurrentSkipListSet的底层是ConcurrentSkipListMap吗? (2)ConcurrentSkipListSet是线程安全的吗? (3)Concurren ...

  7. epoll源码分析(基于linux-5.1.4)

    API epoll提供给用户进程的接口有如下四个,本文基于linux-5.1.4源码详细分析每个API具体做了啥工作,通过UML时序图理清内核内部的函数调用关系. int epoll_create1( ...

  8. CopyOnWriteArrayList 源码分析 基于jdk1.8

    CopyOnWriteArrayList  源码分析: 1:成员属性: final transient ReentrantLock lock = new ReentrantLock();  //内部是 ...

  9. springmvc工作原理以及源码分析(基于spring3.1.0)

    springmvc是一个基于spring的web框架.本篇文章对它的工作原理以及源码进行深入分析. 一.springmvc请求处理流程 二.springmvc的工作机制 三.springmvc核心源码 ...

  10. HashMap源码分析-基于JDK1.8

    hashMap数据结构 类注释 HashMap的几个重要的字段 hash和tableSizeFor方法 HashMap的数据结构 由上图可知,HashMap的基本数据结构是数组和单向链表或红黑树. 以 ...

随机推荐

  1. UIOTOS:一款无门槛的前端0代码搭建工具

    什么是UIOTOS? UIOTOS中文名称前端大师,是一款基于图形技术的前端0代码工具,支持通过连线和嵌套无门槛来搭建各类复杂的的交互界面,包括后台管理系统.组态数据大屏等,实现跟代码开发媲美的效果. ...

  2. 2021-03-10:一个数组上共有 N 个点,序号为0的点是起点位置,序号为N-1 的点是终点位置。现在需要依次的从 0 号点走到 N-1 号点。但是除了 0 号点和 N-1 号点,他可以在其余的 N-2 个位置中选出一个点,并直接将这个点忽略掉,问从起点到终点至少走多少距离?

    2021-03-10:一个数组上共有 N 个点,序号为0的点是起点位置,序号为N-1 的点是终点位置.现在需要依次的从 0 号点走到 N-1 号点.但是除了 0 号点和 N-1 号点,他可以在其余的 ...

  3. Three.js 进阶之旅:滚动控制模型动画和相机动画 🦢

    声明:本文涉及图文和模型素材仅用于个人学习.研究和欣赏,请勿二次修改.非法传播.转载.出版.商用.及进行其他获利行为. 摘要 专栏上篇文章<Three.js 进阶之旅:页面*滑滚动-王国之泪&g ...

  4. 代码随想录算法训练营Day9|字符串KMP算法总结

    代码随想录算法训练营 代码随想录算法训练营Day9字符串|KMP算法 8. 实现 strStr() 459.重复的子字符串 字符串总结 双指针回顾 28. 实现 strStr() KMP算法 题目链接 ...

  5. Python连接es笔记一之连接与查询es

    本文首发于公众号:Hunter后端 原文链接:Python连接es笔记一之连接与查询es 有几种方式在 Python 中配置与 es 的连接,最简单最有用的方法就是定义一个默认的连接,如果系统不是需要 ...

  6. Kruskal 重构树

    Kruskal 重构树 是一棵二叉树,一张 \(N\) 个点的无向连通图的 Kruskal 重构树有 \(2N-1\) 个节点. 叶子节点为原图中节点,非叶子节点有点权,表示想在原图上从一边的子树内的 ...

  7. 入门 Python GUI 开发的第一个坑

    由于微信不允许外部链接,你需要点击文章尾部左下角的 "阅读原文",才能访问文中链接. 使用 Anaconda 3(conda 4.5.11)的 tkinter python 包(c ...

  8. flutter 的 in_app_web_view实现下载功能

    flutter与前端交互,利用in_app_web_view实现下载功能: 首先下载库,终端输入 flutter pub add flutter_inappwebview 之后导出 import 'p ...

  9. 如何使用Stable Diffusion生成艺术二维码?

    硬件准备 物理内存:至少16G(8G直接安装阶段就卡死) N卡:此处我使用GTX 1660 6G (2019年双12购买) 操作系统 windows 11 软件准备 网络要通畅 git: https: ...

  10. 【论文阅读】Learning Deep Features for Discriminative Localization

    这个是周博磊16年的文章.文章通过实验证明,即使没有位置标注,CNN仍是可以得到一些位置信息,(文章中的显著性图) CNN提取的feature含有位置信息,尽管我们在训练的时候并没有标记位置信息: 这 ...